
Horse Race Simulation Program
In this program, you will design, implement and test a program that simulates a horse race.

The Problem
The problem is to create a visualization of a horse race in which horses are moved ahead a
random distance at fixed intervals until there is a winner, as seen below:

Problem Analysis
The program needs a source of random numbers for advancing the horses a random distance
in the race. We can use the random number generator of the Python standard library module
random that you used Coin Change Exercise in Unit 3. The remaining part of the problem is in
the creation of appropriate graphics for producing a visualization of a horse race. You will make
use of the turtle graphics module from the Python standard library to do this.

Program Design

Meeting the Program Requirements
There are no specific requirements for this problem, other than to create an appropriate
simulation of a horse race. Therefore, the requirement is essentially the generation of a horse
race in which the graphics look sufficiently compelling, and each horse has an equal chance of
winning a given race. Since a specific number of horses was not specified, we will design the
program for ten horses in each race.

Data Description
The essential information for this program is the current location of each of the ten horses in a
given race. Each turtle is an object, whose attributes include its shape and its coordinate
position on the turtle screen. Therefore, we will maintain a list of ten turtle objects with the shape
attribute of a horse image for this purpose. Thus, suitable horse images must be found or
created for this purpose.

Overall Program Steps
The overall steps in this program design are given in Figure 6-31.

Program Implementation and Testing

Stage 1 - Creating an Initial Turtle Screen Layout
You will first develop and test an initial program that lays out the positions of the starting horses
on the turtle graphics screen, as shown in Figure 6-32. Figure 6-33 provides this first stage of
the program.

Enter the Stage 1 Code from the sample on the next page.

Notes:
At line 3 the turtle module is imported. Since the import module_name form of import is
used, each call to a method of this module must be prefixed with the module name. For
example, turtle. setup(750, 800) on line 31 (which sets the turtle screen size to a width
of 750 and a height of 800 pixels).

The intent of this version of the program is to ensure that the turtle screen is appropriately sized
and that the initial layout of horse locations is achieved. Therefore, only the default turtle shape
is used at this point. In the next version we will focus on generating a set of horse images on
the screen. Thus, on line 34, the turtle screen object is retrieved (by the call to turtle.
Sreen()) and its reference assigned to variable window. The start location of the first
(lowest) horse is set to an x coordinate value of 240, and a y coordinate value of 2200. This puts
the turtle screen object at the lower right corner of the screen. The amount of vertical separation
between the horses is assigned to variable track_separation. These values were
determined from knowledge of the screen coordinates in turtle graphics and a little trial and
error.

Next, on line 44 a call is made to function generateHorses (at lines 9–15). This function
returns a list of ten new turtle objects, and assigned to variable horses. Function newHorse
(lines 5–7) is called by function generateHorses to create each new horse turtle object. At
this stage, function newHorse simply creates and returns a regular turtle object. In the next
stage how- ever, it will be responsible for returning new turtle objects with an appropriate horse
shape.
The position for each of these horses is determined by function placeHorses on lines 17–
23. It is passed the list of horse turtle objects, the location of the first turtle, and the amount of
separation between each (established as 60 pixels on line 41). Function placeHorses,
therefore, contains a for loop that iterates over the list of horse objects and makes them initially
hidden with their pen up (lines 19–20), moves each to its starting position (line 21), sets the
heading of each to 180 degrees to move left (line 22), and then makes each visible (line 23).
Finally, method exiton-click() is called so that the program will terminate when the user
clicks on the program window’s close box.

Stage 2 - Adding the Appropriate Shapes and Images
We next develop and test the program with additional code that adds the horse shapes (images)
needed. The resulting turtle screen is shown below.

Enter the Stage 2 Code from the sample below:

Notes:
In this stage of the program we add functions getHorseImages and
registerHorseImages, called from lines 61 and 62 of the main program section. Function
getHorseImages returns a list of GIF image files. Each image contains the same horse
image, each with a unique number 1 to 10. Function registerHorseImages does the
required registering of images in turtle graphics by calling method turtle.register_shape
on each.

Function generateHorses (lines 26–32) is implemented the same way as in stage 1 to return
a list of horse turtle objects, except that it is altered to be passed an argument containing a list
of horse images. Thus, the call to generateHorses in line 65 is altered to pass the list of
images in variable horse_images. Function newHorse (lines 19–24) is altered as well to be
passed a particular horse image for the horse that is created, horse.shape(image_file).

Stage 3—Animating the Horses
Next you will develop and test the program with additional code that animates the horses so that
they are randomly advanced until a horse crosses the finish line. The resulting turtle screen is
shown below:

Enter the Stage 3 Code from the sample on the next two pages.

Refer to the notes that follow to guide you.

Notes:
Two new functions are added in this version of the program, startHorses and display-
Winner. Function startHorses (lines 44–58) is passed the list of horse turtle objects, the
location of the finish line (as an x coordinate value on the turtle screen) and the fundamental
increment amount - each horse is advanced by one to three times this amount. The while loop
for incrementally moving the horses is on line 49. The loop iterates until a winner is found, that
is, until the variable have_winner is True. Therefore, have_winner is initialized to False
in line 46. Variable k, initialized on line 48, is used to index into the list of horse turtle objects.

Since each horse in turn is advanced some amount during the race, variable k is incremented
by one, modulo the number of horses in variable num_horses (10) (line 57). When k
becomes equal to num_horses 21 (9), it is reset to 0 (for horse 1).

The amount that each horse is advanced is a factor of one to three randomly determined by call
to method randint(1,3) of the Python standard library module random in line 51. Variable
forward_incr is multiplied by this factor to move the horses forward an appropriate amount.

The value of forward_incr is initialized in the main program section. This value can be
adjusted to speed up or slow down the overall speed of the horses. Function displayWinner
displays the winning horse number in the Python shell (lines 60–61). This function will be
rewritten in the next stage of program development to display a “winner” banner image in the
turtle screen. Thus, this implementation of the function is for testing purposes only.

The main program section (lines 63–100) is the same as in the previous stage of program
development, except for the inclusion of the calls to functions startHorses and display-
Winner in lines 94 and 97.

Final Stage—Adding Race Banners
Finally, we add the code for the displaying of banners at various points in the race as shown on
page 1.

Enter the Final Code from the sample on the next three pages.

Refer to the notes that follow to guide you.

Notes:

This final version imports one additional module, Python Standard Library module time (line
5), used to control the blink rate of the winning horse.

While the race progresses within the while loop at line 102, checks for the location of the lead
horse are made in two places - before and after the halfway mark of the race (on line 108). If the
x coordinate location of the lead horse is less then 125, the “early lead banner” is displayed on
line 117 by a call to function displayBanner. Otherwise, if one second has elapsed, then the
“midrace lead banner” is displayed on line 111.

The sleep method of the time module is used to control the blinking of the winning horse in
function displayWinner. A “count-down” variable, blink_counter, is set to 5 on line
133. This will cause the winning horse to blink five times. The following while loop decrements
blink_counter and continues to iterate until blink_counter is 0. Variable show,
initialized to False on line 132, is used to alternately show and hide the turtle based on its
current (Boolean) value, which is toggled back and forth between True and False each time
through the loop. The sleep method is called on line 143 to cause the program execution to
suspend for four-tenths of a second so that the switch between the visible and invisible horse
appears slowly enough to cause a blinking effect. This version of displayWinner replaces
the previous version that simply displayed the winning horse number in the Python shell
window.

Added functions getBannerImages (lines 17–41), registerBannerImages (lines 47–50),
and displayBanner (lines 86–90) incorporate the banner images into the program the same
way that the horse images were incorporated in the previous program version. Function
startHorses was modified to take another parameter, banners, containing the list of
registered banners displayed during the race, passed to it from the main program section.

Finally, the default turtle (created with the turtle graphics window) is utilized in function
displayBanners and in the main section. It is used to display the various banners at the
bottom of the screen. To do this, the turtle’s “shape” is changed to the appropriate banner
images stored in list banner_images. To prevent the turtle from drawing lines when moving
from the initial (0, 0) coordinate location to where banners are displayed, the default turtle is
hidden and its pen attribute is set to “up” (lines 160–161).

	Horse Race Simulation Program
	The Problem
	Problem Analysis
	Program Design
	Meeting the Program Requirements
	Data Description

	Overall Program Steps
	Program Implementation and Testing
	Stage 1 - Creating an Initial Turtle Screen Layout
	Stage 2 - Adding the Appropriate Shapes and Images
	Stage 3—Animating the Horses
	Final Stage—Adding Race Banners

