Horse Race Simulation Program

In this program, you will design, implement and test a program that simulates a horse race.

The Problem

The problem is to create a visualization of a horse race in which horses are moved ahead a
random distance at fixed intervals until there is a winner, as seen below:

- A2t
A A
A o,
A A0
Al bl
L2 A2
o o
L. o
. L
A o
They'reoff ... Hovse 3 takey an early lead,

1T r1944717

Horse 2 iy looking good. ... We- Hawve e Wivuner!

Problem Analysis

The program needs a source of random numbers for advancing the horses a random distance
in the race. We can use the random number generator of the Python standard library module
random that you used Coin Change Exercise in Unit 3. The remaining part of the problem is in
the creation of appropriate graphics for producing a visualization of a horse race. You will make
use of the turtle graphics module from the Python standard library to do this.

Program Design

Meeting the Program Requirements

There are no specific requirements for this problem, other than to create an appropriate
simulation of a horse race. Therefore, the requirement is essentially the generation of a horse
race in which the graphics look sufficiently compelling, and each horse has an equal chance of
winning a given race. Since a specific number of horses was not specified, we will design the
program for ten horses in each race.

Data Description

The essential information for this program is the current location of each of the ten horses in a
given race. Each turtle is an object, whose attributes include its shape and its coordinate
position on the turtle screen. Therefore, we will maintain a list of ten turtle objects with the shape
attribute of a horse image for this purpose. Thus, suitable horse images must be found or
created for this purpose.

Overall Program Steps

The overall steps in this program design are given in Figure 6-31.

Initialize Turtle Graphics Q

Execute Race Horse
Simulation

Program Implementation and Testing

Stage 1 - Creating an Initial Turtle Screen Layout

You will first develop and test an initial program that lays out the positions of the starting horses
on the turtle graphics screen, as shown in Figure 6-32. Figure 6-33 provides this first stage of
the program.

-_—

Enter the Stage 1 Code from the sample on the next page.

¥ Horse Racing Program (Stage 1)
import turtle
def newHorse():

horse = turtle.Turtle()

return horse

def generateHorses(num horses):

horses = []
11 for k in range (0, num horses):
12 horse = newHorse ()

horses.append(horse)
return horses

def placeHorses(horses, loc, separation):
for k in range (0, len(horses)):
horses[k] .hideturtle ()
horses|[k] .penup ()
horses[k] .setposition(loc[0], loc[l] + k * separation)
horses|[k].setheading (180)
horses|[k] .showturtle ()

—-——= main

init number of horses
num_horses = 10

set window size
turtle.setup (750, B00)

4 get turtle window
window = turtle.Screen()

set window title bar
window.title ('Horse Race Simulation Program')

init screen layout parameters
start loc = (240, -200)
track separation = &0

generate and init horses
horses = generateHorses (num horses)

place horses at starting line
placeHorses (horses, start loc, track separation)

terminate program when close window
turtle.exitonclick()

Notes:

At line 3 the turtle module is imported. Since the import module_name form of import is
used, each call to a method of this module must be prefixed with the module name. For
example, turtle. setup(750, 800) on line 31 (which sets the turtle screen size to a width
of 750 and a height of 800 pixels).

The intent of this version of the program is to ensure that the turtle screen is appropriately sized
and that the initial layout of horse locations is achieved. Therefore, only the default turtle shape
is used at this point. In the next version we will focus on generating a set of horse images on
the screen. Thus, on line 34, the turtle screen object is retrieved (by the call to turtle.
Sreen()) and its reference assigned to variable window. The start location of the first
(lowest) horse is set to an x coordinate value of 240, and a y coordinate value of 2200. This puts
the turtle screen object at the lower right corner of the screen. The amount of vertical separation
between the horses is assigned to variable track_separation. These values were
determined from knowledge of the screen coordinates in turtle graphics and a little trial and
error.

Next, on line 44 a call is made to function generateHorses (at lines 9—-15). This function
returns a list of ten new turtle objects, and assigned to variable horses. Function newHorse
(lines 5-7) is called by function generateHorses to create each new horse turtle object. At
this stage, function newHorse simply creates and returns a regular turtle object. In the next
stage how- ever, it will be responsible for returning new turtle objects with an appropriate horse
shape.

The position for each of these horses is determined by function placeHorses on lines 17—

23. It is passed the list of horse turtle objects, the location of the first turtle, and the amount of
separation between each (established as 60 pixels on line 41). Function placeHorses,
therefore, contains a for loop that iterates over the list of horse objects and makes them initially
hidden with their pen up (lines 19-20), moves each to its starting position (line 21), sets the
heading of each to 180 degrees to move left (line 22), and then makes each visible (line 23).
Finally, method exiton-click() is called so that the program will terminate when the user
clicks on the program window’s close box.

Stage 2 - Adding the Appropriate Shapes and Images

We next develop and test the program with additional code that adds the horse shapes (images)
needed. The resulting turtle screen is shown below.

Horse Race Simulation Program EEE

sEASEEEEAEI

Enter the Stage 2 Code from the sample below:

§ Horse BRacing Program [(Stage 2)
import turtle
def getHorselmages(num horses):

P init empty list
images = []

i get all horse images
for k in range (0, num_horses):

images = images + ["horse '

+ str(k + 1} + ' image.gif']

return images

def registerHorselImages(images) :
for k in range(0, len{images)):
turtle.register shape (images[k])

def newHorse (image file):
horse = turtle.Turtle()
horse.hideturtle()
horse.shape (image file)

return horse

def generateHorses(images, num_horses):
horses = []
for k in range(0, num horses):
horse = newHorse (images([k])
horses. append (horse)
return horses
def placeHorses(horses, loc, separation):
for k in range (0, len(horses)):
horses[k] .hideturtle()
horses[k] .penup()
horses[k] .setposition{loc[0], lec[l] + k * separation)

horses[k] .setheading (180)
horses[k] .showturtle()

Notes:

In this stage of the program we add functions getHorselmages and
registerHorselmages, called from lines 61 and 62 of the main program section. Function
getHorselmages returns a list of GIF image files. Each image contains the same horse
image, each with a unique number 1 to 10. Function registerHorselmages does the
required registering of images in turtle graphics by calling method turtle_register_shape
on each.

Function generateHorses (lines 26-32) is implemented the same way as in stage 1 to return
a list of horse turtle objects, except that it is altered to be passed an argument containing a list
of horse images. Thus, the call to generateHorses in line 65 is altered to pass the list of
images in variable horse_images. Function newHorse (lines 19-24) is altered as well to be
passed a particular horse image for the horse that is created, horse .shape(image_Tfile).

Stage 3—Animating the Horses

Next you will develop and test the program with additional code that animates the horses so that
they are randomly advanced until a horse crosses the finish line. The resulting turtle screen is
shown below:

Herue face Simsta yram

Pythan Shell

Fls B8 Shel Debug Options ‘Windows Help
Fython 3.2.1 (defmult, Jul 10 2011, 21:51:15) [ESC v.1500 32 bic (Istel)] on win =
iz

TYRE "COPYTAgHL™, “credita™ or "licenss ()™ 20T SOTE IALOTEALLSE.

N S S S S S S S E Seen REFTART 5850 a5 8 S S s

>
Horse 4 the winmer'

-
N~
o

-
%
’m,

-

-
-

Li: 'S £k 0

Enter the Stage 3 Code from the sample on the next two pages.

Refer to the notes that follow to guide you.

B o= O D

LN s Cal

d &5 U o Ll

L L e dad B
Lo PO b Od g

oo 0o

Horze Racing Program (Stage 3)

import turtle
import random

def

def

def

e f

getHorseImages (num_horses) :
init empty list
images = []

get all horse images
for k in range(Q, num horses):
images = images + ["horse ' + stri(k+l) + ' _image.gif']

return images

registerHorselmages (images) :
for k in range (0, len{images}):
turtle.register shape(images[k]}

newHorse (image file):
horse = turtle.Turtle()
horse.hideturtle()
horse.shape (image_file)

return horse

generateHorses (images, num horses):

horses = []

for k in range (0, num horses):
horse = newHorse (images[k])
horses.append (horsea)

return horses

placeHorses (horses, loc, separation):
for k in range (0. len(horses)):
horses[k] .hideturtle()
horses[k] .penup()
horses[k].setposition{loc[0], loc[l] + k * separation)
horses (k] . setheading (180}
horses[k] . showtuztle ()
horses[h] .pendown ()

startHorses (horses, finish line, forward incr):
¥ init
have_winner = False

k=20
while not have winner:
horse = horses[k]
horse.forward (random.randint (1, 3) * forward incr)

¥ check for horse over finish line
if horse.position() [0) < finish line:
have winner = True
elae:
k= (k + 1} % len(horses)
return k

def displayWinner (winning horse) :
print('Horse", winning_horse, "the winner!')

—-——- main

init number of horses
num_horseg = 10

§ zet window size
turtle.setup(750, 800)

¥ get turtle window
window = turtle.Screen()

zet window title bar
window.title('Horse Race Simulatcion Program')

§ init screen layout parameters
start_loc = (240, -200}
finish_line = =240

track separation = &0

forward incr = 6

§# register images
hchQ”;NQQQS - GQEHQISQImaqfﬁfﬁuﬂ_hﬁfﬁfﬂﬁ
registerHorselmages (horse_images)

generate and init horses
horses = generateHorses (horse images, num horses)

f place horses at starting line
placelHorses (horses, start loc, track separation)

start horses
winner = startHorses(horses, finish line, forward incr)

display winning horse
displayWinner (winner + 1)

f terminate program When closSe wWindow
turtle.exitonclick()

Notes:

Two new functions are added in this version of the program, startHorses and display-
Winner. Function startHorses (lines 44-58) is passed the list of horse turtle objects, the
location of the finish line (as an x coordinate value on the turtle screen) and the fundamental
increment amount - each horse is advanced by one to three times this amount. The while loop
for incrementally moving the horses is on line 49. The loop iterates until a winner is found, that
is, until the variable have_winner is True. Therefore, have_winner is initialized to False
in line 46. Variable k, initialized on line 48, is used to index into the list of horse turtle objects.

Since each horse in turn is advanced some amount during the race, variable k is incremented
by one, modulo the number of horses in variable num_horses (10) (line 57). When k
becomes equal to num_horses 21 (9), itis reset to O (for horse 1).

The amount that each horse is advanced is a factor of one to three randomly determined by call
to method randint(1,3) of the Python standard library module random in line 51. Variable
forward_incr is multiplied by this factor to move the horses forward an appropriate amount.

The value of Forward_incr is initialized in the main program section. This value can be
adjusted to speed up or slow down the overall speed of the horses. Function displayWinner
displays the winning horse number in the Python shell (lines 60—61). This function will be
rewritten in the next stage of program development to display a “winner” banner image in the
turtle screen. Thus, this implementation of the function is for testing purposes only.

The main program section (lines 63—100) is the same as in the previous stage of program

development, except for the inclusion of the calls to functions startHorses and display-
Winner inlines 94 and 97.

Final Stage—Adding Race Banners

Finally, we add the code for the displaying of banners at various points in the race as shown on
page 1.

Enter the Final Code from the sample on the next three pages.

Refer to the notes that follow to guide you.

N e Gab [=t

Tl ;
= N W R PN I o =Jd

B B B3 R

LN ol Dk

=d

3 B3 B3 RD BRI BRI RS

s Lad L Lad Lad Gab Gk dar F
abw Lal Pod B=b O

i
-.l. =

36

J P D

_— e e el e e
Ll

Horse Racing Program (Finmal Stage)

import turtle
import random
import time

def

getHorselmages (num_horses) :
ipit empty list
images = []

get all horse images
for k in range (0, num_horses):
images = images + ["horse ' + str(k + 1) + '_image.gif']

return images

getBannerImages (num horses):
init empty list
all images = []

get "They're Off" banner image
images = ['theyre off banner.gif']
all images.append(images)

¥ get early lead banner images
images = []
for k in range (0, num_horses):
images = images + ['lead_at_start_' + stri{k + 1) + ".gif']
all images.append(images)

get mid-way lead banner images
images = []
for k in range (0, num_horses):
images = images + ['looking good " + strik + 1) + ".gif"]
all images.append({images)

get "We Have a Winner™ banner image
images = (['winner banner.gif']
all_images.append(images)

return all images

registerHorselmages (images) :
for k in range(0, len{images})):
turtle.register_ shape (images(k])

ik B B

O WD O =

me Ll P b

O O b O U

def

def

registerBannerImages (images) :
for k in range(0, len(images)):
for 1 in range(0, len(images(k])):
turtle.register_shape (images(k][j])

newHorse (image file):
horse = turtle.Turtle ()
horse.hideturtle ()
horse.shape (image file}

return horse

genarateHorses (images, num_horses):

horses = []

for k in range (0, num_horses):
horse = newHorse (images([k])
horses.append (horse)

raturn horsas

placeHorses (horses, loc, separation):
for k in range (0, len(horses)):
horses([k] .hideturtle ()
horses[k] .penup(]

horses (k] .setposition(loc[0], loc[l] + k * separation)

horses (k] .setheading (180)
horses (k] .showturtle ()
horses (k] .pendown ()

findLeadHorse (horses) :
1nit
lead horse = 0

for k in range(l, len{(horses)):
if horses[k].position() [0] < M\
horses[lead _horse] .position() [0]:
lead horse = k
return lead horse

displayBanner (banner, position):

the turtle = turtle.getturtle()

the turtle.setposition(position[0), position([1])
the turtle.shape{banner)

the turtle.stamp()

? def startHorses(horses, banners, finish line, forward incr):

O A 0 e

b b s i e et e e -
BRI RS BRI B P B B B B = R

o Ln s L B3k

init

have winner = False

early leading horse displayed = False
midrace leading_horse displayed = False

display "They're Off" banner image
displayBanner (banner_images([0] [0), (70, -300))

k=20
while not have winner:
horse = horses(k]
horse. forward(random.randint (1, 3) * forward incr)

display mid-race lead banner

lead horse = findLeadHorse (horses)

if horses[lead horse].position()[0] < -125 and %
not midrace leading horse displayed:

displayBanner (banners[2] [lead horse], (40, =-300})
midrace leading horse displayed = True

display early lead banner
elif horses([lead horse].position() [0] < 125 and %
not early leading horse_displayed:
displayBanner (banners([1] [lead_horse], (10, -300})
early leading horse displayed = True

check for horse over finish line
if horse.position()[0] < finish_line:
have winner = True
&lae:
k= (k + 1) % len(horses)
raturn k

127 def displayWinner (winning_horse, winner banner) :
128 # display "We Have a Winner" banner
129 displayBanner (winner banner, (20, =300})

¥ blink winning horse

132 show = False

133 blink_counter = 5

134 while blink_counter != 0:
135 if show:

136 winning horse.showturtle ()

137 show = False

138 blink counter = blink_counter - 1
3 else:

winning_horse.hideturtle ()

show = True

3 time.zleep(.4)
145 & —-—- main

147 # init number of horses
148 num_horses = 10

150 # set window size
151 turtle.setup(750, BOO)

153 # get turtle window
154 windew = turtle.Screan()

156 # set window title
157 window.title('Horse Race Simulation Frogram®)

15% # hide default turtle and keep from drawing
160 the turtle.hideturtle()
161 the turtle.penup ()

163 # init screen layout parameters
164 start_loc = (240, =200}

165 finish_line = -240

166 track separation = &0

167 forward incr = &

1 4 register images

170 horse images = getHorselmages ()

171 banner images = getBannerlmages(}

172 registerHorselImages (horse_images)
'3 registerBannerImages (banner images)

175 # generate and init horses

176 horses = generateHorses (horse images)

177

178 # place horses at starting line

179 placeHorses (horses, start loc, track separation)
180

181 # start horses

182 winner = startHorses (hcorses, banner images, finish line,
183 forward incr)

184

185 # light up for winning horse

186 displayWinner (horses[winner], banner images[3][0])
187

188 # terminate program when close window

189 turtle.exitonclick()

Notes:

This final version imports one additional module, Python Standard Library module time (line
5), used to control the blink rate of the winning horse.

While the race progresses within the while loop at line 102, checks for the location of the lead
horse are made in two places - before and after the halfway mark of the race (on line 108). If the
x coordinate location of the lead horse is less then 125, the “early lead banner” is displayed on
line 117 by a call to function displayBanner. Otherwise, if one second has elapsed, then the
“midrace lead banner” is displayed on line 111.

The sleep method of the time module is used to control the blinking of the winning horse in
function displayWinner. A “count-down” variable, bl ink_counter, is setto 5 on line

133. This will cause the winning horse to blink five times. The following while loop decrements
blink _counter and continues to iterate until bl ink_counter is 0. Variable show,
initialized to False on line 132, is used to alternately show and hide the turtle based on its
current (Boolean) value, which is toggled back and forth between True and False each time
through the loop. The sleep method is called on line 143 to cause the program execution to
suspend for four-tenths of a second so that the switch between the visible and invisible horse
appears slowly enough to cause a blinking effect. This version of displayWinner replaces
the previous version that simply displayed the winning horse number in the Python shell
window.

Added functions getBannerImages (lines 17-41), registerBannerlImages (lines 47-50),
and displayBanner (lines 86—90) incorporate the banner images into the program the same
way that the horse images were incorporated in the previous program version. Function
startHorses was modified to take another parameter, banners, containing the list of
registered banners displayed during the race, passed to it from the main program section.

Finally, the default turtle (created with the turtle graphics window) is utilized in function
displayBanners and in the main section. It is used to display the various banners at the
bottom of the screen. To do this, the turtle’s “shape” is changed to the appropriate banner
images stored in list banner_images. To prevent the turtle from drawing lines when moving
from the initial (O, 0) coordinate location to where banners are displayed, the default turtle is
hidden and its pen attribute is set to “up” (lines 160-161).

	Horse Race Simulation Program
	The Problem
	Problem Analysis
	Program Design
	Meeting the Program Requirements
	Data Description

	Overall Program Steps
	Program Implementation and Testing
	Stage 1 - Creating an Initial Turtle Screen Layout
	Stage 2 - Adding the Appropriate Shapes and Images
	Stage 3—Animating the Horses
	Final Stage—Adding Race Banners

