
Credit Card Calculation Program
For this UPA, you will design, implement, and test a program that will allow you to determine
the length of time needed to pay off a credit card balance, as well as the total interest paid.

The Problem
The problem is to generate a table showing the decreasing balance and accumulating interest
paid on a credit card account for a given credit card balance, interest rate, and monthly
payment, as shown below.

Problem Analysis
The factors that determine how quickly a loan is paid off are the amount of the loan, the interest
rate charged, and the monthly payments made. For a fixed-rate home mortgage, the monthly
payments are predetermined so that the loan is paid off within a specific number of years.
Therefore, the total interest that will be paid on the loan is made evident at the time the loan is
signed.
For a credit card, there is only a minimum payment required each month. It is not always
explicitly stated by the credit card company, however, how long it would take to pay off the card
by making only the minimum payment. The minimum payment for a credit card is dependent on
the particular credit card company. However, it is usually around 2–3% of the outstanding loan
amount each month, and no less than twenty dollars. Thus, calculating this allows us to project
the amount of time that it would take before the account balance becomes zero, as well as the
total interest paid.

Program Design

Meeting the Program Requirements
No particular format is specified for how the output is to be displayed. All that is required is that
the user be able to enter the relevant information and that the length of time to pay off the loan
and the total interest paid is displayed. The user will also be given the choice of assuming the
monthly payment to be the required minimum payment, or a larger specified amount.

Data Description
All that needs to be represented in this program are numerical values for the loan amount, the
interest rate, and the monthly payment made. There is no need to create a data structure as the
table of payments can be generated as it is displayed.

Algorithmic Approach
The only algorithm needed for this problem is the calculation of the required minimum payment.
The minimum payment is usually calculated at 2% or 3% of the outstanding balance, with a
lower limit of around $20. Therefore, we will assume a worst case scenario of a minimum
payment calculated at 2%, with a minimum payment of $20.

Overall Program Steps
The overall steps in this program design are illustrated below:

Program Implementation and Testing

Stage 1 - Developing the Overall Program Structure
Enter the Stage 1 Code from the sample on the next page.

Notes:

The program begins on line 15 with a call to function displayWelcome(). Next, the current
credit card balance and annual interest rate (APR) are input from the user (lines 18–19), each
read as an integer value. Since the monthly interest rate is what will be used in the calculations,
the value in apr is divided by 1200 (on line 21). This converts the value to a monthly interest
rate, as well as converting it to decimal form (for example, 18% as 0.18).

The final value input from the user is the monthly payments that they wish to have the payoff
calculated with. They have a choice of either going with the minimum required monthly
payment, assumed to be $20 for testing purposes (line 28), or a specified monthly payment (line

31). The credit card balance, annual percentage rate, and the assumed monthly payments are
passed to func- tion displayPayments (on line 34) to calculate and display the pay down of
the balance as well as the interest paid over each month of the payoff period.

Functions displayWelcome (line 3) and displayPayments (line 6) consist only of trace
statements. A trace statement prints, for testing purposes, a message indicating that a certain
point in the program has been reached. Trace statements are also used to display the value of
certain variables. Once this part of the program is working, we can focus on implementing the
functions and further developing the main program section.

Stage 1 - Testing
Test the Stage 1 code before continuing. A sample test run of this stage of the program is
shown here:

From the test results, we see that the appropriate values are being input and passed to function
displayPayments. So it looks like the overall structure of this stage of the program is working
correctly.

Stage 2—Generating an Unformatted Display of Payments
Next, you will implement function displayWelcome, and develop an initial implementation of
function displayPayments,as seen below. Refer to the Notes, for details.

Notes:

Remove the two print instructions that were included only for test purposes in stage 1 of the
program (previously on lines 27 and 30). Also, the minimum required monthly payment is
computed (lines 45–48) rather than being set to 20.
Function displayPayments is where most of the work is done in the program. Therefore, we
shall develop this function in stages as well. At this point, we develop the function to display, for
each month during the loan payoff, the year, the current balance, and the total interest paid to
date. We delay issues of screen formatting for the alignment of numbers, and only include
formatting for rounding numeric values to two decimal places.
The while loop on line 21 iterates while balance, passed as an argument to the function, is
greater than zero. The function will keep count of the number of months (lines) displayed, as
well as the total interest paid. Variables num_months and total_int_paid are used for this
purpose, and are therefore initialized before the loop to 0 (lines 11–12). On lines 15–18 the
initial information for the calculation is displayed. Within the while loop, on line 22, the monthly
interest paid (monthly_int) is computed as the current balance of that month during the
payoff period (balance), times the monthly interest rate (int_rate). The total interest paid is
then updated on line 23. On line 24, the new balance is computed as the current balance, plus
the interest for the month, minus the monthly payment.
The next step is to display these computed values. Since time is kept track of in terms of
months, the current year to be displayed is computed using integer division (line 26), adding one
so that the first year is displayed as 1, and not 0. Then on line 27, the line representing the
payment for the current month is displayed. Formatting is used so that all numerical values are
displayed with two decimal places. Finally, variable num_months is incremented by one for the
next iteration of the loop.

Stage 2 Testing
Test this program once for a specified monthly payment amount, and once for the option of
minimum monthly payments. The results are shown below:

Test 1:

Clearly, there is something wrong with this version of the program. The ValueError
generated on the previous page indicates that the format specifier .2f is an unknown format
code for a string type value, referring to line 18. Thus, this must be referring to variable
monthly_payment. But that should be a numeric value, and not a string value! How could it
have become a string type?
Check if the problem also occurs when selecting the minimum payment option (your Test 2
should look like the sample below).

Test 2:

In this case the program works. Since the problem only occurred when the user entered the
monthly payment (as opposed to the minimum payment option), we next try to determine what
differences there are in the program related to the assignment of variable monthly_payment.

When the user selects the minimum monthly payment option, variable monthly_payment is
set to integer value 20 (or 2% of the current balance if balance is greater than 1000).
Otherwise, its value is input from the user. This variable is not redefined anywhere else in the
program. Since the variable monthly_payment is not a local variable, we can display its value
directly from the Python shell,

>>> monthly_payment
'140'

It is a string value. We immediately realize that the input value for variable monthly_payment
was not converted to an integer type, and was thus left as a string type! We fix this problem by
replacing the line with the following,

monthly_payment = int(input('Enter monthly payment: '))

This explains why the problem did not appear in the testing of stage 1 of the program. In that
version, variable monthly_payment was never formatted as a numeric value, and also never
used in a numerical calculation (both of which would have generated an error).

At this point, execute a number of test cases for various initial balances, interest rates, and
monthly payments. You may use the values from the following table which were checked
against online loan payoff calculator tools.

If your Stage 2 Test cases pass, you may move on to the final stage of program development.

Stage 3—Formatting the Displayed Output
In the final stage of the program, input error checking is added. The program is also modified to
allow the user to continue to enter various monthly payments for recalculating a given balance

pay- off. Output formatting is added to make the displayed information more readable. Finally,
you will correct the display of a negative balance at the end of the payoff schedule.

The final version of the program is shown on the next three pages. Please refer to the Notes
that follow.

Notes:
The first set of changes in the program provides some input error checking. (We will address
means of more complete error checking in Chapter 7.) In lines 55–56, tuples yes_response
and no_ response are defined. These are used to check if input from the user is an
appropriate yes/no response. For example, the while statement on line 73 checks that the input
from line 72 is either 'y', 'Y' ,'n', or 'N',

while response not in yes_response + no_response:

by checking if response is in the concatenation of tuples yes_response and
no_response. For determining the specific response, the tuples can be used
individually (line 76),

if response in yes_response:

Similar input error checking is done on line 101.

The next set of changes allows a number of payoff schedules for an entered balance to be
calculated. A while statement is added at line 59, with its condition based on the value of
Boolean variable calc (initialized to True on line 58). To accommodate the recalculation of
payoff schedules, variables num_months, total_int_paid and payment_num are each
reset to 0 in function displayPayments (lines 11–13).

Output formatting is added in function displayPayments. On line 18, 'PAYOFF SCHEDULE' is
displayed right-justified within a field of twenty. On lines 19–20, the column headings are
displayed with appropriate field widths. Lines 37–39 display the balance, payment number and
in- terest of each month, aligned under the column headings. Lines 32–35 ensure that each
year is displayed only once. Finally, in lines 29–30 variable balance is set to zero if it
becomes negative so that negative balances are not displayed.

Final Testing
Complete the testing by executing the program on a set of test cases.

Payoff Info Expected Results Actual Results
Evaluation

Balance Interest
Rate

Monthly
Payment

of
Months

Interest
Paid

of
Months

Interest
Paid

250 18% $20 (min) 14 28.93

600 14% $20 (min) 38 142.80

12,000 20% $240 (min) 109 14,016.23

250 18% $40 7 14.54

600 14% $50 14 50.15

12,000 20% $400 42 4,773.98

	Credit Card Calculation Program
	The Problem
	Problem Analysis

	Program Design
	Meeting the Program Requirements
	Data Description
	Algorithmic Approach

	Overall Program Steps
	Program Implementation and Testing
	Stage 1 - Developing the Overall Program Structure
	Stage 1 - Testing
	Stage 2—Generating an Unformatted Display of Payments
	Stage 2 Testing

	Stage 3—Formatting the Displayed Output
	Final Testing

