
UPA 4 - Calendar Year Program

In this program, you will extend the calendar month program (from Unit 3 UPA) to display a
complete calendar year.

The Problem
The problem is to display a calendar year for any year between 1800 and 2099, inclusive. The
format of the displayed year should be as seen below:

Problem Analysis
The computational issues for this problem are similar to the calendar month program of Chapter
3. We need an algorithm for computing the first day of a given month for years 1800–2099.
However, since the complete year is being displayed, only the day of the week for January 1st
of the given year needs be computed—the rest of the days follow from knowing the number of
days in each month (including February for leap years). The algorithm previously developed to

display a calendar month, however, is not relevant for this program. Instead, the information will
first be stored in a data structure allowing for the months to be displayed three across.

Program Design
Meeting the Program Requirements
You will develop and implement an algorithm that displays the calendar year as shown on the
previous page. You shall request the user to enter the four-digit year to display, with appropriate
input error checking.

Data Description
The program needs to represent the year entered, whether it is a leap year, the day of the week
for January 1st of the year, and the number of days in each month (accounting for leap years).
The names of each of the twelve months will also be stored for display in the calendar year.
Given this information, the calendar year can be appropriately constructed and displayed.
You will make use of nested lists for representing the calendar year. The data structure will start
out as an empty list and will be built incrementally as each new calendar month is computed.
The list structures for the calendar year and calendar month are given below,

calendar_year = [[calendar_month], [calendar_month], etc.]]

calendar_month = [week_1, week_2, . . ., week_k]

Each italicized month is represented as a list of four to six strings, with each string storing a
week of the month to be displayed (or a blank line for alignment purposes).

The strings are formatted to contain all the spaces needed for proper alignment when displayed.
For example, since the first week of May 2015 begins on a Friday, the string value for this week
would be,

The complete representation for the calendar year 2015 follows, with the details shown for the
months of February and May.

(Typically, yearly calendars combine the one or two remaining days of the month on the sixth
line of a calendar month onto the previous week. We shall not do that in this program, however.)

Algorithmic Approach
You will make use of the “day of the week” algorithm that you previously used. For this program,
however, the only date for which the day of the week needs to be determined is January 1 of a
given year. Thus, the original day of the week algorithm can be simplified by removing variable
day and replacing its occurrence on line 6 with 1, as seen below.

Overall Program Steps
The overall steps in this program design are illustrated here:

Program Implementation and Testing

Stage 1—Determining the Day of the Week (for January 1st)
You will first write and test the code for determining the day of the week for January 1st of a
given year.

Enter the Stage 1 Code from the sample on the next page.

Notes:

Line 4 initializes Boolean flag terminate to False. If the user enters -1 for the year (in lines
10-13), terminate is set to True and the while loop at line 7 terminates, thus terminating the
program. If a valid year is entered, lines 19-42 are executed.

Lines 19-22 determine if the year is a leap year using the same code as in the calendar month
program, assigning Boolean variable leap_year accordingly. Lines 25-40 implement the
simplified day of the week algorithm for determining the day of the week for January 1 of a given
year in Figure 4.17, with the result displayed on line 42.

Stage 1—Testing
Test the Stage 1 code before continuing. A sample test run of this stage of the program is
shown here:

The following table displays possible test cases used for the program.

If all test cases pass, you can move on to the next stage of program development.

Stage 2—Constructing the Calendar Year Data Structure
Next you will develop the part of the program that constructs the data structure holding all of the
calendar year information to be displayed. The data structure begins empty and is incrementally
built, consisting of nested lists.

(Code follows, on next two pages)

Notes:

Lines 4–14 perform the required initialization. Tuples days_in_month and month_ names
have been added to the program to store the number of days for each month (with February
handled as an exception) and the month names. On line 11, calendar_year is initialized to
the empty list. It will be constructed month-by-month for the twelve months of the year. There is
the need for strings of blanks of various lengths in the program, initialized as
month_separator, blank_week, and blank_col (lines 12–14). The calendar_ year
data structure will contain all the space characters needed for the calendar months to be

properly displayed. Therefore, there will be no need to develop code that determines how each
month should be displayed as in the calendar month program. The complete structure will sim-
ply be displayed row by row.

Lines 17–49 are the same as the first stage of the program for determining the day of the week
of a given date. Once the day of the week for January 1st of the given year is known, the days
of the week for all remaining dates simply follow. Thus, there is no need to calculate the day of
the week for any other date.

Line 52 begins the for loop for constructing each of the twelve months. On line 53, the month
name is retrieved from tuple month_names and assigned to month_name. Variable current_
day, holding the current day of the month, is initialized to 1 for the new month (line 56). In lines
57–60, first_day_of_current_month, determined by the day of the week algorithm, is
converted to the appropriate column number. Thus, since 0 denotes Saturday, if
first_day_of_current_month equals 0, starting_col is set to 7. Otherwise,
starting_col is set to first_day_of_current_month (e.g., if first_day_of_
current_month is 1, then starting_col is set to 1).

In lines 62–64, the initialization for a new month finishes with the reassignment of
current_col, calendar_week, and calendar_month. Each calendar week of a given
month is initially assigned to the empty string, with each date appended one-by-one. Variable
current_col is used to keep track of the current column (day) of the week, incremented from
0 to 6. Since the first day of the month can fall on any day of the week, the first week of any
month may contain blank (“skipped”) columns. This includes the columns from current_col
up to but not including starting_col. The while loop in lines 67–69 appends any of these
skipped columns to empty string calendar_week.

Lines 72–75 assign num_days_this_month to the number of days stored in tuple days_
in_month. The exception for February, based on whether the year is a leap year or not, is
handled as a special case. The while loop at line 77 increments variable current_day from 1
to the number of days in the month. In lines 80–81 each date is appended to calendar_week
right-justified as a string of length three by use of the format function. Thus, a single-digit date
will be appended with two leading blanks, and a double-digit date with one leading blank so that
the columns of dates align.

For each new date appended to calendar_week, a check is made on line 84 as to whether
the end of the week has been reached. If the last column of the calendar week has been
reached (when column_col equals 7) then the constructed calendar_week string is
appended to the calendar_month (line 85). In addition, calendar_week is re-initialized to
the empty string, and current_col is reset to 1 (lines 86–87). If the last column of the
calendar week has not yet been reached, then current_col is simply incremented by 1 (line

89). Then, on line 92, variable current_day is incremented by 1, whether or not a new week
is started.

When the while loop (at line 77) eventually terminates, variable current_week holds the last
week of the constructed month. Therefore, as with the first week of the month, the last week
may contain empty columns. This is handled by lines 95–97. Before appending
calendar_week to calendar_month, any remaining unfilled columns are appended to it (the
reason that these final columns must be blank-filled is because months are displayed side-by-
side, and therefore are needed to keep the whole calendar properly aligned),

calendar_week = calendar_week + blank_week[0:(7-current_col+1) * 3]

Thus, the substring of blank_week produced will end up as an empty string if the value of
current_col is 6 (for Saturday, the last column) as it should. Line 100 sets variable
first_day_ of_current_month to current_col since current_col holds the column
value of the next column that would have been used for the current month, and thus is the first
day of the following month. On line 101, the completed current month is appended to list
calendar_year. And on line 102, calendar_month is reset to an empty list in anticipation
of the next month to be constructed. Finally, on line 104, the complete calendar_year list is
displayed. Because the program prompts the user for other years to be constructed and
displayed, the calendar_year list is reset to the empty list (line 107).

Stage 2 - Testing
Run the program, and you should find that the program terminates with an error on line 53,

This line is within the for loop at line 52,

For some reason, index variable month_num is out of range for tuple month_names. Look at
the final value of month_num by typing the variable name into the Python shell,

>>> month_num
11

Since month_names has index values 0–11 (since of length 12), an index value of 11 should
not be out of range. How, then, can this index out of range error happen? Just to make sure
that month_ names has the right values, we display its length,

>>>len(month_names)
11

This is not right! The tuple month_names should contain all twelve months of the year. That is
the way it was initialized on line 7, and tuples, unlike lists, cannot be altered, they are
immutable. This does not seem to make sense. To continue our investigation, we display the
value of the tuple,

>>> month_names
('January', 'February', 'March', 'April', 'May', 'JuneJuly',
'August', 'September', 'October', 'November', 'December')
>>>

Now we see something that doesn’t look right. Months June and July are concatenated into
one string value 'JuneJuly’ making the length of the tuple 11, and not 12 (as we
discovered). That would explain why the index out of range error occurred.

What, then, is the problem. Why were the strings 'June' and 'July' concatenated? We
need to look at the line of code that creates this tuple,

month_names 5 ('January', 'February', 'March', 'April', 'May', 'June'
'July', 'August', 'September', 'October', 'November', 'December')

It looks OK. Strings 'June' and 'July' were written as separate strings. We then decide to
count the number of items in the tuple. Since items in tuples and lists are separated by commas,
we count the number of items between the commas. We count the items up to 'May', which is
five items as it should be, then 'June', which is six items . . . ah, there is no comma after the
string 'June'! That must be why strings 'June' and 'July' were concatenated, and thus
the source of the index out of range error. We try to reproduce this in the shell,

>>> 'June' 'July'
'JuneJuly'

That’s it! We have found the problem and should feel good about it.

So… make this correction in your code.

Then re-execute the program.

After making the correction and re-executing the program, you should get the following results:

We can see if the output looks like the structure that we expect. The first item in the list, the
structure for the month of January, is as follows,

In checking against available calendar month calculators, we see that the first day of the month
for January 2015 is a Thursday. Thus, the first week of the month should have four skipped
days, followed by 1, 2, and 3 each in a column width of 3. We find that there are fourteen blank
characters in the first line. The first twelve are for the four skipped columns, and the last two are
for the right-justified string ‘1’ in the column of the first day of the month,

Since there are five weeks in the month, there should be one extra “blank week” at the end of
the list to match the vertical spacing of all other months. We see, in fact, that the last (sixth)
string is a string of blanks.

Since the calendar_year structure looks correct, we now develop the final stage of the
program that displays the complete calendar year.

 Stage 3—Displaying the Calendar Year Data Structure
Update the code based on the following. See notes for details.

Notes:

In this final version, the only change at the start of the program is that a program greeting is
added on line 19. The rest of the program is the same up to line 105, the point where the
calendar year has been constructed. (The print(calendar_year) line and re-initialization
of calendar_year to the empty list have been removed from the previous version, since they
were only there for testing purposes.)

The new code in this version of the program is in lines 107–141, which displays the calendar
year.
On line 108 the year is displayed. Because the months are displayed three across, as shown in
Figure 4-16, the for loop on line 111 iterates variable month_num over the values [0, 3, 6,
9]. Thus, when month_num is 0, months 0-2 (January - March) are displayed. When
month_num is 3, months 3-5 (April - June) are displayed, and so forth.

The for loop at line 114 displays the month names for each row (for example, January,
February, and March). Each is displayed left-justified in a field width of 19. A leading blank
character is appended to the formatting string to align with the first column of numbers displayed
for each month. The print(. . ., end5'') form of print is used, which prevents the cursor from
moving to the next line. Thus, the months can be displayed side-by-side. Variable month_
separator contains the appropriate number of blank spaces (initialized at the top of the
program) to provide the required amount of padding between the months, as shown below,

Lines 119–120 perform the initialization needed for the following while loop (at line 122), which
displays each week, one-by-one, of the current three months. Variable week is initial- ized to
zero for each month and is used to keep count of the number of weeks displayed. Variable
lines_to_print is initialized to True to start the execution of the following while loop.

At line 125 within the while loop, lines_to_print is initialized to False. It is then set to
True by any (or all) of the current three months being displayed only if they still have more
calendar lines (weeks) to print, thus causing the while loop to continue with another iteration.
This occurs within the for loop at lines 128–135. Since variable month_num indicates the
current month being displayed, the number of weeks in the month is determined by the length of
the tuple of strings for the current month k.

len(calendar_year[k])

Note that some months may have no more weeks to display, whereas others may. This is the
case for the first three months of 2015,

In this case, the while loop needs to continue to iterate in order to display the last lines of
January and March even though the last line of February has been displayed. Therefore, in
cases where a given month has a line to print but another month doesn’t, a blank line is
displayed in order to maintain the correct alignment of month weeks. After the week of dates (or
blank week) is output for each of the three months, the cursor is moved to the start of the next
line (on line 138) and variable week is incremented by one (line 141) before the loop begins the
next iteration for displaying the next row of calendar weeks.

Finally, the while loop at line 122 continues to iterate until there are no more lines to display for
all of the three months currently being displayed—that is, until lines_to_print is False.

Final Testing

Complete the testing by executing the program on a set of test cases. Although the test plan is
not as complete as it could be, it includes test cases for months from each century, including
both leap years and non-leap years.

Calendar Month

Expected Results Actual Results
Evaluation?

First Day num days First Day num days

April 1912 Sunday 30

February 1985 Monday 28

May 2015 Tuesday 31

January 1800 Wednesday 31

February 1900 Thursday 28

August 2031 Friday 29

January 2011 Saturday 31

If your test plan passes for all test cases, the output should look as follows:

	UPA 4 - Calendar Year Program
	The Problem
	Problem Analysis

	Program Design
	Meeting the Program Requirements
	Data Description
	Algorithmic Approach

	Overall Program Steps
	Program Implementation and Testing
	Stage 1—Determining the Day of the Week (for January 1st)
	Stage 1—Testing
	Stage 2—Constructing the Calendar Year Data Structure
	Stage 2 - Testing
	Stage 3—Displaying the Calendar Year Data Structure

