
Calendar Month Program

The Problem
The problem is to display a calendar month for any
given month between January 1800 and December
2099. The format of the month should be as shown on
the right..

Problem Analysis
Two specific algorithms are needed for this problem. First, we need an algorithm for computing
the first day of a given month for years 1800 through 2099. For this, we will use the algorithm
discussed in Unit 1. The second needed algorithm is for appropriately displaying the calendar
month, given the day of the week that the first day falls on, and the number of days in the
month. You will develop this algorithm.

Program Design
Meeting the Program Requirements
You will develop and implement an algorithm that displays the month as given. There is no
requirement of how the month and year are to be entered, so let’s request the user to enter the
month and year as integer values, with appropriate input error checking.

Data Description
What needs to be represented in the program is the month and year entered, whether the year
is a leap year or not, the number of days in the month, and which day the first of the month falls
on. Given that information, the calendar month can be displayed. The year and month will be
entered and stored as integer values, represented by variables year and month,

year = 2012 month = 5

The remaining values will be computed by the program based on the given year and month, as
given below,

leap_year num_days_in_month day_of_week

Variable leap_year holds a Boolean (True/False) value. Variables num_days_in_month
and day_of_week each hold integer values.

Algorithmic Approach
First, we need an algorithm for determining the day of the week that a given date
falls on. The algorithm for this from Unit 1 is copied below.

You also need to determine how many days are in a given month, which relies on an algorithm
for determining leap years for the month of February. The code for this has already been
developed in the “Number of Days in Month” program in the last lesson. Please, reuse the
portion of code from that program for determining leap years, reproduced below.

if (year % 4 == 0) and (not (year % 100 == 0) or year % 400): leap_year =
True

else:
 leap_Year = False

Let’s review how this algorithm works, and try to determine the day of the week on which May
24, 2025 falls. First, variable century_digits (holding the first two digits of the year) is set
to 20 and year_digits (holding the last two digits of the year) is set to 25 (steps 1 and 2).
Variable value, in step 3, is then set to

value = year_digits + floor(year_digits / 4)

= 25 + floor(25/4) ➝ 25 + floor(6.25) ➝ 25 + 6 ➝ 31

In step 4, since century_digits is equal to 20, value is incremented by 6,

value = value + 6 ➝ 31 + 6 ➝ 37

In step 5, since the month is equal to May, value is incremented by 2,

value = value + 2 ➝ 37 + 2 ➝ 39

In step 6, value is updated based on the day of the month. Since we want to determine the
day of the week for the 24th (of May), value is updated as follows,

value 5 (value + day of the month) mod 7
= (39 + 24) mod 7
= 63 mod 7
5 0

Therefore, by step 7 of the algorithm, the day of the week for May 24, 2025 is a Saturday. A
table for the interpretation of the day of the week for the final computed value is shown below:

Program Stages
You will develop and test the program in three stages.

Stage 1 - Determining the Number of Days in the
Month/Leap Years
You will develop and test the program in three stages. First,
you will implement and test the code that determines, for a
given month and year, the number of days in the month and
whether the year is a leap year or not.

Stage 2 - Determining the Day of the Week
Next, you will implement and test the code that determines
what day of the week is represented by the given month
and date.

Stage 3 - Displaying the Calendar Month
Next, you will implement and test the code that determines
the correct calendar format represented by the given month
and date.

Stage 1 - Determining the Number of Days in the Month/Leap Years
Start a new Python Project and name it Calendar Month. Enter the code below:

Notes
The month and year entered by the user are stored in variables month and year. While loops are
used at lines 16 and 21 to perform input error checking. Lines 25–28 are adapted from the
previous Number of Days in Month program for determining leap years. Lines 31–38 are similar
to the previous program for determining the number of days in a month, stored in variable
num_days_in_month. Lines 42– 45 contain added code for the purpose of testing. These
instructions will not be part of the final program. The program continues to prompt for another

month until 21 is entered. Thus, Boolean flag terminate is initialized to False (line 4) and set to
True (line 14) when the program is to terminate.

Stage 1 Testing
Test Stage 1 programming entering the
following year and moths, and recording your
results in the following table.
See sample test results on the right.

Calendar Month

Expected Results Actual Results
Evaluation?

num days leap year? num days leap year?

January 1800 31 no 31 no passed

February 1900 28 no

February 1984 29 yes

February 1985 28 no

February 2000 29 yes

March 1810 31 no

April 1912 30 yes

May 2015 31 no

June 1825 30 no

July 1928 31 yes

August 2031 31 no

September 1845 30 no

October 1947 31 no

November 2053 30 no

December 2099 31 no

If all test cases, pass, you can move on to Stage 2.

Stage 2 - Determining the Day of the Week
Enter the code below, that determines what day of the week is represented by the
given month and date.

(Continued on next page)
Stage 2 code, continued from previous page:

Notes:
For testing purposes, there is no need to convert the day number into the actual name (e.g.,
“Monday”)—this “raw output” is good enough. Also, for this program, we will need to determine
only the day of the week for the first day of any given month, since all remaining days follow
sequentially. Therefore the day value in the day of the week algorithm is hard-coded to 1 (line 1)
The algorithm operates separately on the first two digits and the last two digits of the year. On
line 41, integer division is used to extract the first two digits of the year (for example 1860 // 100
equals 18).
On line 42, the modulus operator, %, is used to extract the last two digits in the given year (for
example 1860 % 100 equals 60)

Stage 2 Testing
Test Stage 2 programming entering the following year and months, and recording
your
results.
See
sample
test
results
below:

Test your results of the Stage 2 program, using the dates in the Stage 1 Test
table. If all the dates pass, incremental save _stage2, and continue on to Stage 3.

Stage 3 - Displaying the Calendar Month
Delete the code from lines 73-74. Then add the following, to complete Stage 3.

Notes:
The corresponding name for the month number is determined on lines 74–97 and displayed
(line 100). The while loop at line 113 moves the cursor to the proper starting column by
“printing” the column_width number of blank characters (4) for each column to be skipped.

The while loop at line 119 displays the dates. Single-digit dates are output (line 121) with three
leading spaces, and two-digit dates with two (line 123) so that the columns line up. Each uses
the newline suppression form of print, print(..., end5'') to prevent the cursor from
moving to the next screen line until it is time to do so.

Variable current_day is incremented from 1 to the number of days in the month. Variable
current_col is also incremented by 1 to keep track of what column the current
date is being displayed in. When current_col equals 7, it is rest to 1 (line 128)
and print()moves the cursor to the start of the next line (line 129). Otherwise,
current_col is simply incremented by 1.

Stage 3 Testing
Test Stage 3 programming by entering the first year and month (January 1800. You should see
the following:

Test one more month date, to confirm the results.

Something is obviously wrong. The calendar month is displayed with eight
columns instead of seven. The testing of all other months produces the same
results. Since the first two stages of the program were successfully tested, the
problem must be in the code added in the final stage. The code at line 74 simply
assigns the month name. Therefore, we reflect on the logic of the code starting on
line 103.

Lines 128–129 is where the column is reset back to column 1 and a new
screen line is started, based on the current value of variable current_col,

if current_col ,5 7:
current_col 5 current_col 1 1

else:

current_col 5 1
print()

Variable current_col is initialized to 1 at line 108, and is advanced to the proper starting
column on lines 113–115. Variable starting_col is set to the value (0-6) for the day of the
week for the particular month being displayed. Since the day of the week results have been
successfully tested, we can assume that current_col will have a value between 0 and 6.
With that assumption, you can step through lines 125–129 and see if this is where the problem
is. Stepping through a program on paper by tracking the values of variables is referred to as
deskchecking. Check what happens as the value of current_col approaches 7, as shown
below:

Now it is clear what the problem is - the classic “off by one” error! The condition of the while loop
should be current_col , 7, not current_col ,5 7. Current_col should be reset to 1
once the seventh column has been displayed (when current_col is 7). Using the ,5 operator
causes current_col to be reset to 1 only after an eighth column is displayed. Thus, we make
this correction in the program,

if current_col < 7:
current_col = current_col 1 1 else:
current_col = 1
print()

After re-executing the program with this correction we get the correct column format, as seen
below:

Although the column error has been corrected, notice that the first of the month appears under
the wrong column—the month should start on a Wednesday (fourth column), not a Thursday
column (fifth column). The problem must be in how the first row of the month is displayed.
Other months are tested, each found to be off by one day. We therefore look at lines 113–115
that are responsible for moving over the cursor to the correct starting column,

while current_col <= starting_col:
print(blank_column, end='')
current_col = current_col + 1

We consider whether there is another “off by one” error. Reconsidering the condition of the
while loop, we realize that, in fact, this is the error. If the correct starting column is 4
(Wednesday), then the cursor should move past three columns and place a 1 in the fourth
column. The current condition, however, would move the cursor past four columns, thus placing
a 1 in the fifth column (Thursday). The corrected code is given below.

while current_col < starting_col:
print(' ', end='')
current_col = current_col + 1

The month is now correctly displayed.

Final Testing

Complete the testing by executing the program on a set of test cases. Although the test plan is
not as complete as it could be, it includes test cases for months from each century, including
both leap years and non-leap years.

Calendar Month

Expected Results Actual Results
Evaluation?

First Day num days First Day num days

April 1912 Sunday 30

February 1985 Monday 28

May 2015 Tuesday 31

January 1800 Wednesday 31

February 1900 Thursday 28

August 2031 Friday 29

January 2011 Saturday 31

	Calendar Month Program
	The Problem
	Problem Analysis
	Program Design
	Data Description
	Algorithmic Approach
	Program Stages
	Stage 1 - Determining the Number of Days in the Month/Leap Years

	Stage 2 - Determining the Day of the Week
	Stage 3 - Displaying the Calendar Month

