
UPA 2 - Age in Seconds Program
We look at the problem of calculating an individual’s age in seconds. It is not feasible to
determine a given person’s age to the exact second. This would require knowing, to the second,
when they were born. It would also involve knowing the time zone they were born in, issues of
daylight savings time, con- sideration of leap years, and so forth. Therefore, the problem is to
determine an approximation of age in seconds. The program will be tested against calculations
of age from online resources.

The Problem
The problem is to determine the approximate age of an individual in seconds within 99%
accuracy of results from online resources. The program must work for dates of birth from
January 1, 1900 to the present.

 Problem Analysis
The fundamental computational issue for this problem is the development of an algorithm
incorporating approximations for information that is impractical to utilize (time of birth to the
second, daylight savings time, etc.), while producing a result that meets the required degree of
accuracy.

Program Design
Meeting the Program Requirements
There is no requirement for the form in which the date of birth is to be entered. We will therefore
design the program to input the date of birth as integer values. Also, the program will not
perform input error checking, since we have not yet covered the programming concepts for this.

Data Description
The program needs to represent two dates, the user’s date of birth, and the current date. Since
each part of the date must be able to be operated on arithmetically, dates will be represented
by three integers. For example, May 15, 1992 would be represented as follows:

year = 1992 month = 5 day = 15

Hard-coded values will also be utilized for the number of seconds in a minute, number of
minutes in an hour, number of hours in a day, and the number of days in a year.

 Algorithmic Approach
The Python Standard Library module datetime will be used to obtain the current date. (See
the Python 3 Programmers’ Reference.) We consider how the calculations can be
approximated without greatly affecting the accuracy of the results.

We start with the issue of leap years. Since there is a leap year once every four years (with
some exceptions), we calculate the average number of seconds in a year over a four-year
period that includes a leap year. Since non-leap years have 365 days, and leap years have
366, we need to compute,

numsecs_day = (hours per day) * (mins per hour) * (secs per minute)
numsecs_year = (days per year) * numsecs_day
avg_numsecs_year = (4 * numsecs_year) + numsecs_day) // 4 (one extra day for leap year)
avg_numsecs_month = avgnumsecs_year // 12

To calculate someone’s age in seconds, we use January 1, 1900 as a basis. Thus, we compute
two values—the number of seconds from January 1 1900 to the given date of birth, and
 the number of seconds from January 1 1900 to the current date. Subtracting the former
from the latter gives the approximate age,

Note that if we directly determined the number of seconds between the date of birth and
current date, the months and days of each would need to be compared to see how many full
months and years there were between the two. Using 1900 as a basis avoids these
comparisons. Thus, the rest of our algorithm is given below.

numsecs_1900_to_dob = (year_birth - 1900) * avg_numsecs_year +

(month_birth - 1) * avg_numsecs_month +
(day_birth * numsecs_day)

numsecs_1900_to_today = (current_year 2 1900) * avg_numsecs_year +
(current_month - 1) * avg_numsecs_month +
(current_day * numsecs_day)

age_in_secs = num_secs_1900_to_today - numsecs_1900_to_dob

Program Stages
The overall steps in this program design are show below:

Program Implementation and Testing

Stage 1—Getting the Date of Birth and Current Date
First, we decide on the variables needed for the program. For date of birth, we use
variables month_ birth, day_birth, and year_birth. Similarly, for the current
date we use variables current_ month, current_day, and current_year.
The first stage of the program assigns each of these values, shown below:

 Stage 1 Testing

We add test statements that display the values of the assigned variables. This is to ensure that
the dates we are starting with are correct; otherwise, the results will certainly not be correct.
The test run below indicates that the input is being correctly read.

Enter month born (1-12): 4
Enter day born (1-31): 12
Enter year born (4-digit): 1981
The date of birth read is: 4 12 1981
The current date read is: 1 5 2010

Stage 2—Approximating the Number of Seconds in a Year/Month/Day
Next we determine the approximate number of seconds in a given year and month, and the
exact number of seconds in a day stored in variables avg_numsecs_year,
avg_numsecs_month, and numsecs_day, respectively, shown below:

The lines of code prompting for input are commented out (lines 6–9 and 11–14). Since it is
easy to comment out (and uncomment) blocks of code in IDLE, we do so; the input values are
irrelevant to this part of the program testing.

Stage 2 Testing

Following is the output of this test run. Checking online sources, we find that the number of
seconds in a regular year is 31,536,000 and in a leap year is 31,622,400. Thus, our
approximation of 31,557,600 as the average number of seconds over four years (including a
leap year) is reasonable. The avg_num_seconds_month is directly calculated from variable
avg_numsecs_ year, and numsecs_day is found to be correct.

numsecs_day 86400
avg_numsecs_month = 2629800
avg_numsecs_year = 31557600

Final Stage—Calculating the Number of Seconds from 1900
Finally, we complete the program by calculating the approximate number of
seconds from 1900 to both the current date and the provided date of birth. The
difference of these two values gives the approximate age in seconds. The complete
program is shown below:

We develop a set of test cases for this program. We follow the testing strategy of including
“average” as well as “extreme” or “special case” test cases in the test plan. The test results are
shown below:

Birth Date Expected Results Actual Results Inaccuracy Evaluation

Jan 1, 1900 3,520,023,010±86,400 1,468,917 99.96% failed

April 12, 1981 955,156,351±86,400 518,433 99.94% failed

Jan. 4, 2000 364,090,570±86,400 1,209,617 99.64 failed

Dec. 31, 2009 48,821,332±86,400 -1,123,203 102.12 failed

Yesterday 86,400±86,400 86,400 0 % passed

The “correct” age in seconds for each was obtained from an online source. January 1, 1900
was included in the test plan since it is the earliest date (“extreme case”) that the program is
required to work for. April 12, 1981 was included as an average case in the 1900s, and
January 4, 2000 as an average case in the 2000s. December 31, 2009 was included since it is
the last day of the last month of the year. Finally, a test case for a birthday on the day before
the current date was included as a special case. (See sample program execution in Figure 2-
28). Since these values are continuously changing by the second, we consider any result
within one day’s worth of seconds (± 84,000) to be an exact result.

The program results are obviously incorrect, since the result is approximately equal to the
average number of seconds in a month (determined above). The only correct result is for the
day before the current date. The inaccuracy of each result was calculated as follows for April 12,
1981,

((abs(expected_results – actual_results) – 86,400) / expected_results) * 100 = ((917,110,352 – 518,433) -
86400) / 917,110,352) * 100 = 99.93 %

Either our algorithmic approach is flawed, or it is not correctly implemented. Since we didn’t find
any errors in the development of the first and second stages of the program, the problem must

be in the calculation of the approximate age in lines 29–37. These lines define three variables:
numsecs_1900_dob, numsecs_1900_today, and age_in_secs. We can inspect the values
of these variables after execution of the program to see if anything irregular pops out at us.

This program computes the approximate age in seconds
of an individual based on a provided date of birth.
Only ages for dates of birth from 1900 and after can
be computed
Enter month born (1-12): 4
Enter day born (1-31): 12
Enter year born: (4-
digit)1981
You are approximately 604833 seconds old
>>>

>>> numsecs_1900_dob
259961031015
>>> numsecs_1900_today
259960426182
>>>

Clearly, this is where the problem is, since we are getting negative values for the times
between 1900 and date of birth, and from 1900 to today. We “work backwards” and consider
how the expressions could give negative results. This would be explained if, for some reason,
the second operand of the subtraction were greater than the first. That would happen if the
expression were evaluated, for example, as

numsecs_1900_dob = (year_birth - (1900 * avg_numsecs_year)) + \
(month_birth - (1 * avg_numsecs_month)) + \
(day_birth * numsecs_day)

rather than the following intended means of evaluation,

numsecs_1900_dob 5 ((year_birth - 1900) * avg_numsecs_year) + \
((month_birth 2 1) * avg_numsecs_month) + \
(day_birth * numsecs_day)

Now we realize! Because we did not use parentheses to explicitly indicate the proper order of
operators, by the rules of operator precedence Python evaluated the expression as the first
way above, not the second as it should be. This would also explain why the program gave the
correct result for a date of birth one day before the current date. Once we make the corrections
and rerun the test plan, we get the following results shown below:

Birth Date Expected Results Actual Results Inaccuracy

Jan 1, 1900 3,520,023,010±86,400 3,520,227,600 < .004 %

April 12, 1981 955,156,351±86,400 955,222,200 0 %

Jan. 4, 2000 364,090,570±86,400 364,208,400 < .009 %

Dec. 31, 2009 48,821,332±86,400 48,929,400 < .05%

Yesterday 86,400±86,400 86,400 0 %

These results demonstrate that our approximation of the number of seconds in a year was
sufficient to get very good results, well within the 99% degree of accuracy required for this
program. We would expect more recent dates of birth to give less accurate results given that
there is less time that is approximated. Still, for test case December 31, 2009 the inaccuracy is
less than .05 percent. Therefore, we were able to develop a program that gave very accurate
results without involving all the program logic that would be needed to consider all the details
required to give an exact result.

	UPA 2 - Age in Seconds Program
	The Problem
	Problem Analysis
	Program Design
	Data Description
	Program Stages
	Program Implementation and Testing
	Stage 1—Getting the Date of Birth and Current Date
	Stage 2—Approximating the Number of Seconds in a Year/Month/Day

	Stage 2 Testing
	Final Stage—Calculating the Number of Seconds from 1900

