
More Python Modules

Module Private Variables
In Python, all identifiers in a module are “public” - that is, accessible by any other module that
imports it. Sometimes, however, entities (variables, functions, etc.) in a module are meant to be
“private” - used within the module, but not meant to be accessed from outside it.
Python does not provide any means for preventing access to variables or other entities meant to
be private. Instead, there is a convention that names beginning with two underscores (_) are
intended to be private. Such entities, therefore, should not be accessed. It does not mean that
they cannot be accessed, however. There is one situation in which access to private variables is
restricted. When the from modulename import * form of import is used to import all the
identifiers of a module’s namespace, names beginning with double underscores are not
imported. Thus, such entities become inaccessible from within the importing module.

Module Loading and Execution
Each imported module of a Python program needs to be located and loaded into memory.
Python first searches for modules in the current directory. If the module is not found, it searches
the directories specified in the PYTHONPATH environment variable. If the module is still not
found (or PYTHONPATH is not defined), a Python installation-specific path is searched (e.g.,
C:\Python32\Lib). If the program still does not find the module, an error (ImportError
exception) is reported. For our purposes, all of the modules of a program will be kept in the
same directory. However, if you wish to develop a module made available to other programs,
then the module can be saved in your own Python modules directory specified in the
PYTHONPATH, or stored in the particular Python installation Lib directory.

When a module is loaded, a compiled version of the module with file extension .pyc is
automatically produced. Then, the next time that the module is imported, the compiled .pyc file
is loaded, rather than the .py file, to save the time of recompiling. A new compiled version of a
module is automatically produced whenever the compiled version is out of date with the source
code version of the module when loading, based on the dates that the files were
created/modified.

Built-in Function dir()
Built-in function dir() is very useful for monitoring the items in the namespace of the main
module for programs executing in the Python shell. For example, the following gives the
namespace of a newly started shell,

>>>dir()
[' builtins ', ' doc ', ' name ', ' package ']

The following shows the namespace after importing and defining variables,

Selecting Shell ➝ Restart Shell (Ctrl-F6) in the shell resets the namespace,

(after Restart Shell selected)
>>>dir()
[' builtins ', ' doc ', ' name ', ' package ']

Your Turn

Create the following Python module named simplemodule, import it, and call function display-
Greeting as shown from the Python shell and observe the results.
simplemodule
def displayGreeting():

print('Hello World!')

>>>import simplemodule
>>>simplemodule.displayGreeting()

Modify module simplemodule to display 'Hey there world!', import and again execute
function
displayGreeting as shown. Observe the results.

>>>import simplemodule
>>>simplemodule.displayGreeting()

Finally, reload the module as shown and again call function displayGreeting.

>>> reload(simplemodule)
>>>simplemodule.displayGreeting()
???

Part II - Local, Global, and Built-in Namespaces in Python
During a Python program’s execution, there are as many as three namespaces that are
referenced (“active”) - the built-in namespace, the global namespace, and the local namespace.
The built-in namespace contains the names of all the built-in functions, constants, and so on,
in Python. The global namespace contains the identifiers of the currently executing module.
And the local namespace is the namespace of the currently executing function (if any).

When Python looks for an identifier, it first searches the local namespace (if defined), then the
global namespace, and finally the built-in namespace. Thus, if the same identifier is defined in
more than one of these namespaces, it becomes masked, as shown here:

Functions sum and max are built-in functions in Python, and thus in the built-in namespace.
Built-in function sum returns the sum of a sequence (list or tuple) or integers. Built-in function
max returns the largest value of a string, list, tuple, and other types.

In the module (and thus part of the global namespace) is defined another function named max.
This programmer-defined function returns the index of the largest value from an ordered
collection of items, not the value itself as built-in function max is designed to do. This is
demonstrated below.

max([4, 2, 7, 1, 9, 6]) ➝ 9 (built-in function max)

max([4, 2, 7, 1, 9, 6]) ➝ 4 (programmer-defined function max)

Which specific functions are called from within somefunction depends on where the
functions are defined. Function sum, for example, is not defined within the global namespace.
Therefore, built-in function sum of the built-in namespace is called. The call to function max, on
the other hand, does not access the built-in function max; rather, it calls function max of the
more closely defined global namespace. This demonstrates how issues of scope, if not clearly
considered, can result in subtle and unexpected program errors.

This program is meant to read in the exam grades of a class. (The grades are hard-coded here
for the sake of an example.) The main module imports module grade_calc that contains
function grades_ highlow, which returns as a tuple the highest grade (with extra credit
grades over 100 returned as 100) and lowest grade in a list of grades. Upon executing this
program, we find the following results,

Highest adjusted grade on the exam was 100

Lowest grade on the exam was 72

The actual highest grade on the exam was 100
>>>

For the list of grades 86, 72, 94, 102, 89, 76, 96, the high and low grades of 72 and 100 is
correct (counting the grade 102 as a grade of 100). Then the program is to display the actual
highest grade of 102. However, a grade of 100 is displayed instead.
The problem is that the grade_calc module was imported using from grade_calc
import *. Thus, all of the entities of the module were imported, including the defined max
function. This function returns a “truncated” maximum grade of 100 from a list of grades, used
as a supporting function for function grades_highlow. However, since it is defined in the
global (module) namespace of the classgrades program, that definition of function max
masks the built-in max function of the built-in namespace. Thus, when called from within the
class- grades program, it also produces a truncated highest grade, thus returning the
actual highest grade of 100 instead of 102.

This example shows the care that must be taken in the use and naming of global identifiers,
especially with the from-import * form of import. Note that if function max were named as a
private member of the module, max, then it would not have been imported into the main module
and the actual highest grade displayed would have been correct.

Your Turn

Enter the following in the Python Shell. Create a file with the following module:

>>> sum [1, 2, 3] # module max_test_module
??? def test max():
 print ‘max =’, max ([1,2,3])

>>> def sum (n1,n2,n3): Create and execute the following program:
 total = n1 + n2 + n3 import max_test_module
 return total def max():

>>>sum ([1, 2, 3]) print (‘max:local namespace called’)
??? print (max_test_module())

>>>sum (1, 2, 3)
???

Part III - A Programmer-Defined Stack Module
In order to demonstrate the development of a programmer-defined module, we present an
example stack module. A stack is a very useful mechanism in computer science. Stacks are
used to temporarily store and retrieve data. They have the property that the last item placed on
the stack is the first to be retrieved. This is referred to as LIFO - “last in, first out.” A stack can
be viewed as a list that can be accessed only at one end, as depicted below:

In this example, three items are pushed on the stack, denoted by A, B, and C. First, item A is
pushed, followed by item B, and then item C. After the three items have been placed on the
stack, the only item that can be accessed or removed is item C, located at the top of stack.
When C is retrieved, it is said to be popped from the stack, leaving item B as the top of stack.
Once item B is popped, item A becomes the top of stack. Finally, when item A is popped, the
stack becomes empty. It is an error to attempt to pop an empty stack.

The following is a Python module containing a set of functions that implements this stack
behavior. For demonstration purposes, the program displays and pushes the values 1 through 4
on the stack. It then displays the numbers popped off the stack, retrieved in the reverse order
that they were pushed.

The stack module consists of five functions - getStack, isEmpty, top, push, and
pop. The stack is implemented as a list. Only the last element in the list is accessed - that is
where all items are “pushed” and “popped” from. Thus, the end of the list logically functions as
the “top” of stack. Function getStack (lines 3–7) creates and returns a new empty stack as an
empty list. Function isEmpty (lines 9–16) returns whether a stack is empty or not (by checking
if an empty list). Function top (lines 18–27) returns the top item of a stack without removing it.
Functions push (lines 29–33) and pop (lines 35–44) provide the essential stack operations. The
push function pushes an item on the stack by appending it to the end of the list. The pop
function removes the item from the top of stack by retrieving the last element of the list, and
then deleting it. If either pop or top are called on an empty stack, the special value None is
returned.

The small program above demonstrates the use of the stack module. First, a new stack is
created by assigning variable mystack to the result of the call to function getStack (line 3).
Even though a list is returned, it is intended to be more specifically a stack type. Therefore,
only the stack-related functions should be used with this variable—the list should not be directly
accessed, otherwise the stack may become corrupted. Then the values 1 through 4 are pushed
on the stack, and popped in the reverse order,

Pushing 1 on stack
Pushing 2 on stack
Pushing 3 on stack
Pushing 4 on stack
Popping 4 from stack
Popping 3 from stack
Popping 2 from stack
Popping 1 from stack

Ensuring that only the provided functions can be used on the stack represents a fundamental
advantage of objects. Since an object consists of data and methods (routines), only the
methods of the object can be used to access and alter the data. Thus, the stack type is best
implemented as an object, as all other values in Python are.

Concepts and Procedures
1. Any initialization code in a Python module is only executed once, the first time that the
module is loaded. (TRUE/FALSE)
2. With the “import moduleName” form of import, any utilized entities from the imported module
must be prefixed with the module name. (TRUE/FALSE)

3. When importing modules, all Python Standard Library modules must be imported before any
programmer-defined modules, otherwise a runtime error will occur. (TRUE/FALSE)

4. If a particular module is imported more than once in a Python program, the Python interpreter
will ensure that the module is only loaded and executed the first time that it is imported.
(TRUE/FALSE)

5. The command can be used to force the reloading of a given module, useful
for when working interactively in the Python shell.

Problem Solving
1. Depict what is left on stacks after the following series of push and pop operations
(starting with the first column of operations and continuing with the second).
Assume that the stack is initially empty.

push(s,10) push(s,50)
push(s,20) push(s,60)
push(s,40) push(s,80)
pop(s) pop(s)
pop(s) pop(s)

	More Python Modules
	Module Private Variables
	Module Loading and Execution
	Built-in Function dir()

	Part II - Local, Global, and Built-in Namespaces in Python
	Part III - A Programmer-Defined Stack Module

	Concepts and Procedures
	Problem Solving

