
Python Modules

What Is a Python Module?
A Python module is a file containing Python definitions and statements. When a Python file is
directly executed, it is considered the main module of a program. Main modules are given the
special name main . Main modules provide the basis for a complete Python program. They
may import (include) any number of other modules (and each of those modules import other
modules, etc.). Main modules are not meant to be imported into other modules.

As with the main module, imported modules may contain a set of statements. The statements of
imported modules are executed only once, the first time that the module is imported. The
purpose of these statements is to perform any initialization needed for the members of the
imported module. The Python Standard Library contains a set of predefined Standard (built-in)
modules. We have in fact seen some of these modules already, such as the math and random
Standard Library modules.

Python modules provide all the benefits of modular software design we have discussed. By
convention, modules are named using all lower-case letters and optional underscore characters.
We will look more closely at Python modules in the next section.

Your Turn

Create a Python module by entering the following in a file name simple.py. Then execute the
instructions in the Python shell as shown and observe the results.
module simple >>> import simple
print('module simple loaded') ???

 >>>simple.func1()
def func1(): ???

print('func1 called')
 >>>simple.func2()

def func2(): ???

Part II - Modules and Namespaces
A namespace is a container that provides a named context for a set of identifiers. Namespaces
enable programs to avoid potential name clashes by associating each identifier with the

namespace from which it originates. In software development, a name clash is when two
otherwise distinct entities with the same name become part of the same scope. Name clashes
can occur, for example, if two or more Python modules contain identifiers with the same name
and are imported into the same program, as shown below:

In this example, module1 and module2 are imported into the same program. Each module
contains an identifier named double, which return very different results. When the function call
double(num_list) is executed in main, there is a name clash. Thus, it cannot be
determined which of these two functions should be called. Namespaces provide a means for
resolving such problems.
In Python, each module has its own namespace. This includes the names of all items in the
module, including functions and global variables—variables defined within the module and
outside the scope of any of its functions. Thus, two instances of identifier double, each defined
in their own module, are distinguished by being fully qualified with the name of the module in
which each is defined: module1.double and module2.double. The figure below illustrates
the use of fully qualified identifiers for calls to function double.

The use of namespaces to resolve problems associated with duplicate naming is not restricted
to computer programming. In fact, it occurs in everyday situations. Imagine, for instance, that
you run into a friend who tells you that “Paul is getting married.” In fact, you have two friends in
common named Paul. Because you are not certain which Paul your friend is referring to, you
may re- spond “Paul from back home, or Paul from the dorm?” In this case, you are asking your
friend to respond with a fully qualified name to resolve the ambiguity: “home:Paul” vs.
“dorm:Paul.”

Your Turn

Enter each of the following functions in their own modules named mod1.py and mod2.py. Enter and
execute the following and observe the results.
mod1 >>> import mod1, mod2
def average(lst): >>>mod1.average([10, 20, 30])

print('average of mod1 called') ???
 >>>mod2.average([10, 20, 30])

mod2 ???
def average(lst): >>>average([10, 20, 30])

print('average of mod2 called') ???

Part III - Importing Modules
In Python, the main module of any program is the first (“top-level”) module executed. When
working interactively in the Python shell, the Python interpreter functions as the main module,
containing the global namespace. The namespace is reset every time the interpreter is started
(or when selecting Shell ➝ Restart Shell. Next we look at various means of importing
modules in Python. (We note that module builtins is automatically imported in Python
programs, providing all the built-in constants, functions, and classes.)

The “import modulename” Form of Import
When using the import modulename form of import, the namespace of the imported module
becomes available to, but not part of, the importing module. Identifiers of the imported module,
therefore, must be fully qualified (prefixed with the module’s name) when accessed. Using this
form of import prevents any possibility of a name clash. Thus, as we have seen, if two modules,
module1 and module2, both have the same identifier, identifier1, then
module1.identifier1 denotes the entity of the first module and module2.identifier1
denotes the entity of the second module.

Your Turn

Enter the following into the Python shell and observe the results.

>>> factorial(5) >>>import math
??? >>>factorial(5)

 ???
>>>math.factorial(5)
??? >>>math.factorial(5)

???

Part IV - The “from-import” Form of Import
Python also provides an alternate import statement of the form

from modulename import something

where something can be a list of identifiers, a single renamed identifier, or an asterisk, as
shown below,

(a) from modulename import func1, func2
(b) from modulename import func1 as new_func1
(c) from modulename import *

In example (a), only identifiers func1 and func2 are imported. In example (b), only identifier
func1 is imported, renamed as new_func1 in the importing module. Finally, in example (c),
all of the identifiers are imported, except for those that begin with two underscore characters,
which are meant to be private in the module.
There is a fundamental difference between the from modulename import and import
modulename forms of import in Python. When using import modulename, the namespace of
the imported module does not become part of the namespace of the importing module, as
mentioned. Therefore, identifiers of the imported module must be fully qualified (e.g.,
modulename. func1) in the importing module. In contrast, when using from-import, the
imported module’s namespace becomes part of the importing module’s namespace. Thus,
imported identifiers are referenced without being fully qualified (e.g., func1).

The from modulename import func1 as new_func1 form of import is used when
identifiers in the imported module’s namespace are known to be identical to identifiers of the
importing module. In such cases, the renamed imported function can be used without needing
to be fully qualified. Finally, using the from modulename import * form of import in
example (c), although convenient, makes name clashes more likely. This is because the names
of the imported identifiers are not explicitly listed in the import statement, creating a greater

chance that the programmer will unintentionally define an identifier with the same name as in
the importing module. And since the from-import form of import allows imported identifiers to
be accessed without being fully qualified, it is unclear in the importing module where these identifiers
come from. Here is an example of this.

Module somemodule contains functions func1 and func2. Since somemodule is imported
with from somemodule import *, identifiers func1 and func2 become part of the main
module’s namespace. However, since the module’s namespace already contains identifier
func2 (denoting the function defined there), access to func2 of somemodule is masked,
and therefore is inaccessible. Using the fully qualified form somemodule.func2 does not work
either, since somemodule is not part of the imported namespace for this form of import.

Finally, it is recommended Python style that standard modules be imported before the
programmer-defined ones, with each section of imports separated by a blank line as shown
below.

import standardmodule1 # standard modules
import standardmodule2

import somemodule1 # programmer-defined modules
import somemodule2

Your Turn

Enter the definition of function ordered given above into the Python Shell. Then enter the
following and observe the results.

>>> from math import factorial >>>from math import factorial as fact
>>> factorial(5) >>> fact(5)
??? ???

>>> def factorial(n): >>> def factorial(n):
 print (‘my factorial’) print (‘my factorial’)

>>> factorial(5) >>> factorial(5)
??? ???

>>> math.factorial(5) >>> fact(5)
??? ???

Concepts and Procedures
1. By convention, variables names in a module beginning with two characters are
meant to be treated as private variables of the module.

2. When importing modules, all Python Standard Library modules must be imported before any
programmer-defined modules, otherwise a runtime error will occur. (TRUE/FALSE)

3. The three active namespaces that may exist during the execution of any given Python
program are the , and namespaces.

Problem Solving
1. For module1, module2, and the client module shown below, indicate which of
the imported identifiers would result in a name clash if the imported identifiers were
not fully qualified.

2. For the program in Figure 7-9 that imports modules module1 and module1,
indicate how many total namespaces exist for this program.

3. For the Palindrome Checker program in section 7.3.7, describe the changes that would be
needed in the program if the import statement were changed from import Stack to from
Stack import *.

4. For the following program and the imported modules, describe any name clashes that would
occur for both program version1 and version 2.

	Python Modules
	What Is a Python Module?
	Part II - Modules and Namespaces
	Part III - Importing Modules
	The “import modulename” Form of Import

	Part IV - The “from-import” Form of Import
	Concepts and Procedures
	Problem Solving

