
Top-Down Design
One method of deriving a modular design is called top-down design. In this approach, the
overall design of a system is developed first.

Developing a Modular Design of the Calendar Year Program
You will now develop a modular design for the calendar year program from Unit 4 (implemented
there without the use of functions) using a top-down design approach. The three overall steps of
the program are getting the requested year from the user, creating the calendar year structure,
and displaying the year. This is shown here:

Then consider whether any of these modules needs to be further broken down. Making such a
decision is more of an art than a science. The goal of modular design is that each module
provides clearly defined functionality, which collectively provide all of the required functionality of
the program. Modules get year and display calendar year are not complex enough to require
further breakdown. Module construct calendar year, on the other hand, is where most of the
work is done, and is therefore further broken down. The figure below contains the modules of
this next design step.

In order to construct a calendar year, it must be determined whether the year is a leap year,
what day of the week January 1st of that year falls on, and how many days are in each month
(accounting for leap years). Thus, modules leap year, day of week January 1, and num days in
month are added as submodules of module construct calendar year. The calendar month for
each of the twelve months must then be individually constructed, handled by module construct
calendar month.

Calendar Year Program Modules
The modular design of the calendar year program provides a high-level view of the program.
However, there are many issues yet to resolve in the design. Since each module is to be
implemented as a function, we need to specify the details of each function. For example, for
each function it needs to be decided if it is a value-returning function or a non-value-returning
function; what parameters it will take; and what results it will produce. We give such a
specification on the next page using Python docstrings.

Notes:
This stage of the design provides sufficient detail from which to implement the program. The
main module provides the overall construction of the program. It simply displays the program
greeting, calls module getYear to get the year from the user, calls module
constructCalYear to construct the year, and finally calls module displayCalendar to
display the calendar year. The only detail that the main module is concerned with is allowing the
user to keep displaying another calendar year, or enter -1 to terminate the program. This is
controlled by Boolean variable terminate.

The first module called, getYear, returns the integer value entered by the user. The module’s
specification indicates that it returns an integer value between 1800 and 2099, inclusive; or 21 (if
the user decides to terminate the program). Therefore, it is the responsibility of the module to
ensure that no other value is returned. This relieves the main module of having to check for bad
input.

The next module that the main module uses is module constructCalYear. This module
returns a list of twelve sublists, one for each month, in which each sublist begins with the name
of the month (as a string value), followed by each of the weeks in the month, each week
formatted as a single string. The module’s specification indicates that it is to be passed a year
between 1800 and 2099, inclusive. Therefore, any year given to it that is outside that range
violates its condition for use, and therefore the results are not guaranteed.

The last module called from the main module is module displayCalendar. It is given a con-
structed calendar year, as constructed by module constructCalMonth. Based on the
modular design of the calendar year program, constructCalYear is the only module relying
on the use of submodules, specifically modules leapYear, dayOfWeekJan1,
numDaysInMonth, and constructCal. The leapYear module determines whether a given a
year is a leap year or not, returning a Boolean result. Module dayOfWeekJan1 returns the day
of the week for January 1st of the provided year. Boolean value leap_year must also be
provided to the module, needed in the day of the week algorithm on which the module is based.
Module numDaysInMonth must be passed an integer in the range 1–12, as well as a Boolean
value for leap_year. This is so that the module can determine the number of days in the month
for the month of February. Finally, constructCalMonth is given a month number, the day of
the week of the first day of the month (1-Sun, 2-Mon, . . ., 0-Sat) and the number of days in the
month. With this information, module constructCalYear can construct the calendar list and
its sublists to be displayed.

Finally, module displayCalendarMonth is given a formatted calendar year. Its job is to
display the calendar year three months across.

Concepts and Procedures
1. In top-down design (select one),

a) The details of a program design are addressed before the overall design.

b) The overall design of a program is addressed before the details.

2. All modular designs are a result of a top-down design process. (TRUE/FALSE)

3. In top-down design, every module is broken down into the same number of submodules.
(TRUE/FALSE)

4. Which of the following advantages of modular design apply to the design of the calendar
program.

a) Provides a means for the development of well-designed programs.
b) Provides a natural means of dividing up programming tasks.
c) Provides a means of separately testing individual parts of a program.

Programming Problems

1. Implement a set of functions called getData, extractValues, and calcRatios.
Function getData should prompt the user to enter pairs of integers, two per line, with each
pair read as a single string, for example,

Enter integer pair (hit Enter to quit):

134 289 (read as '134 289')
etc.

These strings should be passed one at a time as they are being read to function extractValue,
which is designed to return the string as a tuple of two integer values,

extractValues('134 289') returns (134, 289)
etc.

Finally, each of these tuples is passed to function calcRatios one at a time to calculate and
return the ratio of the two values. For example,

calcRatios((134, 289)) returns 0.46366782006920415
etc.

Implement a complete program that displays a list of ratios for an entered series of integer value pairs.
Make sure to include docstring specification for each of the functions.

	Top-Down Design
	Developing a Modular Design of the Calendar Year Program
	Calendar Year Program Modules
	Notes:
	Concepts and Procedures
	Programming Problems

