
Still More Functions

Keyword Arguments in Python
The functions we have looked at so far were called with a fixed number of positional arguments.
A positional argument is an argument that is assigned to a particular parameter based on its
position in the argument list, as illustrated below.

This function computes and returns the monthly mortgage payment for a given loan amount
(amount), interest rate (rate), and number of years of the loan (term).

Python provides the option of calling any function by the use of keyword arguments. A key-
word argument is an argument that is specified by parameter name, rather than as a positional
argument as shown below (note that keyword arguments, by convention, do not have a space
before or after the equal sign),

This can be a useful way of calling a function if it is easier to remember the parameter names
than it is to remember their order. It is possible to call a function with the use of both positional
and keyword arguments. However, all positional arguments must come before all keyword
arguments in the function call, as shown below.

This form of function call might be useful, for example, if you remember that the first argument
is the loan amount, but you are not sure of the order of the last two arguments rate and
term.

Your Turn

Enter the following function definition in the Python Shell. Execute the statements below and observe the
results.
>>> def addup(first, last): >>>addup(1,10)

???
 if first > last:

 sum = -1
 else: >>>addup(first=1, last=10)
 sum = 0 ???
 for i in range(first, last+1):
 sum = sum + i >>>addup(last=10, first =1)

 return sum ???

Part II - Default Arguments in Python
Python also provides the ability to assign a default value to any function parameter allowing for
the use of default arguments. A default argument is an argument that can be optionally
provided, as shown here

In this case, the third argument in calls to function mortgage_rate is optional. If omitted,
parameter term will default to the value 20 (years) as shown. If, on the other hand, a third
argument is provided, the value passed replaces the default parameter value. All positional
arguments must come before any default arguments in a function definition.

Your Turn

Enter the following function definition in the Python Shell. Execute the statements below and observe the results.
>>> def addup(first, last, incr=1): >>>addup(1,10)

???
 if first > last: >>>addup(1,10,2)

 sum = -1
 else: >>>addup(first=1, last=10)
 sum = 0 ???
 for i in range(first, last+1, incr):
 sum = sum + i
 return sum >>>addup(last=10, first =1)

 ???

Part III - Variable Scope
Looking back at the temperature conversion program, you can see that functions display
FahrenToCelsius and displayCelsiusToFahren each contain variables named temp
and converted_temp. We ask, “Do these identifiers refer to common entities, or does each
function have its own distinct entities?” The answer is based on the concept of identifier scope,
which we discuss next.

Local Scope and Local Variables
A local variable is a variable that is only accessible from within a given function. Such variables
are said to have local scope. In Python, any variable assigned a value in a function becomes a
local variable of the function. Consider the example below:

Both func1 and func2 contain identifier n. Function func1 assigns n to 10, while function
func2 assigns n to 20. Both functions display the value of n when called - func2 displays the
value of n both before and after its call to func1. If identifier n represents the same variable, then

shouldn’t its value change to 10 after the call to func1? However, as shown by the output, the
value of n remains 20. This is because there are two distinct instances of variable n, each local
to the function assigned in and inaccessible from the other.

Now consider the example below. In this case, the functions are the same as above except that
the assignment to variable n in func1 is commented out.

In this case, we get an error indicating that variable n is not defined within func1. This is
because variable n defined in func2 is inaccessible from func1.

The period of time that a variable exists is called its lifetime. Local variables are automatically
created (allocated memory) when a function is called, and destroyed (deallocated) when the
function terminates. Thus, the lifetime of a local variable is equal to the duration of its function’s
execution. Consequently, the values of local variables are not retained from one function call to
the next.

The concept of a local variable is an important one in programming. It allows variables to be
defined in a function without regard to the variable names used in other functions of the
program. It also allows previously written functions to be easily incorporated into a program.

Your Turn

Enter the following function definition in the Python Shell. Execute the statements below and observe
the results.
>>> def func1(): >>> func1()

some_var = 10 >>> some_var
 ???

Part IV - Global Variables and Global Scope
A global variable is a variable that is defined outside of any function definition. Such variables
are said to have global scope. This is illustrated below:

Variable max is defined outside func1 and func2 and therefore “global” to each. As a result,
it is directly accessible by both functions. For this reason, the use of global variables is generally
considered to be bad programming style. Although it provides a convenient way to share values
among functions, all functions within the scope of a global variable can access and alter it. This
may include functions that have no need to access the variable, but none-the-less may
unintentionally alter it.
Another reason that the use of global variables is bad practice is related to code reuse. If a
function is to be reused in another program, the function will not work properly if it is reliant on
the existence of global variables that are nonexistent in the new program. Thus, it is
good programming practice to design functions so all data needed for a function (other than its
local variables) are explicitly passed as arguments, and not accessed through global variables.

Concepts and Procedures

1. A local variable in Python is a variable that is,

(a) defined inside of every function in a given program
(b) local to a given program
(c) only accessible from within the function it is defined

2. A global variable is a variable that is defined outside of any function definition.
(TRUE/FALSE)

3. The use of global variables is a good way to allow different functions to access and modify
the same variables. (TRUE/FALSE)

Problem Solving

1. Write a Python function named zeroCheck that is given three integers, and returns true if
any of the integers is 0, otherwise it returns false.

2. Write a Python function named ordered3 that is passed three integers, and returns true if
the three integers are in order from smallest to largest, otherwise it returns false.

3. Write a Python function named modCount that is given a positive integer, n, and a second
positive integer, m <= n, and returns how many numbers between 1 and n are evenly divisible
by m.

4. Write a Python function named helloWorld that displays "Hello World, my name is name",
for any given name passed to the routine.

5. Write a Python function named printAsterisks that is passed a positive integer value n,
and prints out a line of n asterisks. If n is greater than 75, then only 75 asterisks should be
displayed.

	Still More Functions
	Keyword Arguments in Python
	Part II - Default Arguments in Python
	Part III - Variable Scope
	Local Scope and Local Variables

	Part IV - Global Variables and Global Scope
	Concepts and Procedures
	Problem Solving

