
More on Functions
In this section you will learn about issues related to function use, including more on function
invocation and parameter passing.

Calling Value-Returning Functions
Calls to value-returning functions can be used anywhere that a function’s return value is
appropriate,

result = max(num_list) * 100

Here, we apply built-in function max to a list of integers, num_list. Examples of additional
allowable forms of function calls are given below.

(a) result = max(num_list1) * max(num_list2)
(b) result = abs(max(num_list))
(c) if max(num_list) , 10:...
(d) print('Largest value in num_list is ', max(num_list))

The examples demonstrate that an expression may contain multiple function calls, as in (a); a
function call may contain function calls as arguments, as in (b); conditional expressions may
contain function calls, as in (c); and the arguments in print function calls may contain function
calls, as in (d).

What if a function is to return more than one value, such as function maxmin to return both the
maximum and minimum values of a list of integers? In Python, we can do this by returning the
two values as a single tuple,

function definition
def maxmin(num_list):
return (max(num_list), min(num_list))

function use
weekly_temps = [45, 30, 52, 58, 62, 48, 49]

(a) highlow_temps = maxmin(weekly_temps)
(b) high, low = maxmin(weekly_temps)

In (a) above, the returned tuple is assigned to a single variable, highlow_temps. Thus,
highlow_ temps[0] contains the maximum temperature, and highlow_temps[1]
contains the minimum temperature. In (b), however, a tuple assignment is used. In this case,

variables high and low are each assigned a value of the tuple based on the order that they
appear. Thus, high is assigned to the tuple value at index 0, and low the tuple value at index
1 of the returned tuple.

Note that it does not make sense for a call to a value-returning function to be used as a
statement, for example,

 max(num_list)

Such a function call does not have any utility because the expression would evaluate to a value
that is never used and thus is effectively “thrown away.”

Finally, we can design value-returning functions that do not take any arguments, as we saw in
the getConvertTo function of the previous temperature conversion program. Empty
parentheses are used in both the function header and the function call. This is needed to
distinguish the identifier as denoting a function name and not a variable.

Your Turn

Enter the definitions of functions avg and minmax given above. Then enter the following
function calls and observe the results.

>>> avg(10,25,40) >>>num_list = [10,20,30]
???

>>>max_min = maxmin(num_list)
>>>avg(10,25,40) + 10 >>>max_min[0]
??? ???

>>>if avg(10,25,240) , 0: >>> max_min[1]
 print 'Invalid avg' ???
???

>>>max, min = maxmin(num_list)
>>> avg(avg(2,4,6),8,12) >>>max
??? ???

>>>avg(1,2,3) * avg(4,5,6) >>>min
??? ???

Part II - Calling Non-Value-Returning Functions
As we have seen, non-value-returning functions are called for their side effects, and not for a
returned function value. Thus, such function calls are statements, and therefore can be used
anywhere that an executable statement is allowed. Consider such a function call to display-
Welcome

displayWelcome()

It would not make sense to treat this function call as an expression, since no
meaningful value is returned (only the default return value None). Thus, for
example, the following assignment statement would not serve any purpose,

welcome_displayed = displayWelcome()

Finally, as demonstrated by function displayWelcome(), functions called for their side effects
can be designed to take no arguments, the same as we saw for value-returning functions.
Parentheses are still included in the function call to indicate that identifier displayWelcome is
a function name, and not a variable.

Your Turn

Enter the definition of function hello given below, then enter the following function calls and
observe the results.

>>> def sayHello(): >>>def buildHello(name):

print('Hello!') return 'Hello' + name + '!'

>>>sayHello() >>>greeting = buildHello('Charles')
??? >>>print (greeting)
 ???

>>>t = sayHello() >>>buildHello (‘Charles’)
??? ???

>>> t = = None >>>buildHello ()
??? ???

Part III - Parameter Passing
Now that we have discussed how functions are called, we take a closer look at the passing of
arguments to functions.

Actual Arguments vs. Formal Parameters
Parameter passing is the process of passing arguments to a function. As we have seen, actual
arguments are the values passed to a function’s formal parameters to be operated on. This is
illustrated below:

Here, the values of birthYr (the user’s year of birth) and HSGradYr (the user’s year of high
school graduation) are passed as the actual arguments to formal parameters n1 and n2. Each
call is part of the same Boolean expression ordered(birthYr, HSGradYr) and
ordered(HSGradYr, colGradYr). In the second function call of the expression, a different
set of values HSGradYr and colGradYr are passed. Formal parameter names n1 and n2,
however, remain the same.

Note that the correspondence of actual arguments and formal parameters is determined by the
order of the arguments passed, and not their names. Thus, for example, it is perfectly fine to
pass an actual argument named num2 to formal parameter n1, and actual argument num1 to
formal parameter n2, as shown below:.

In this example, function ordered is called once with arguments num1, num2 and a second
time with arguments num2, num1. Each is a proper function call and each is what is logically
needed in this instance.

Your Turn

Enter the definition of function ordered given above into the Python Shell. Then enter the
following and observe the results.

>>> nums_1 = [5,2,9,3] >>>ordered(max(nums_1), max(nums_2))
>>> nums_2 = [8,4,6,1] ???
 >>>ordered(min(nums_1), min(nums_2))

Part IV - Mutable vs. Immutable Arguments
There is an issue related to parameter passing that we have yet to address. We know that when
a function is called, the current values of the arguments passed become the initial values of
their corresponding formal parameters,

In this case, literal values are passed as the arguments to function avg. When variables are
passed as actual arguments, however, as shown below,

there is the question as to whether any changes to formal parameters n1, n2, and n3 in the
function result in changes to the corresponding actual arguments num1, num2, and num3. In this
case, function avg doesn’t assign values to its formal parameters, so there is no possibility of
the actual arguments being changed. Consider, however, the following function,

def countDown(n):
while n >5 0:

if (n != 0):
print(n, '..', end='')

else:
print(n)

n = n - 1

This function simply displays a countdown of the provided integer parameter value. For
example, function call countDown(4) produces the following output,

4 . . 3 . . 2 . . 1 . . 0

What if the function call contained a variable as the argument, for example, countDown(num_
tics)? Since function countDown alters the value of formal parameter n, decrementing it
until it reaches the value −1, does the corresponding actual argument
num_tics have value
−1 a s we l l ?

>>> num_tics = 10
>>> countDown(num_tics)
>>> num_tics
???

If you try this, you will see that num_tics is unchanged. Now consider the following function,

Function sumPos returns the sum of only the positive numbers in the provided argument. It
does this by first replacing all negative values in parameter nums with 0, then summing the list
using built-in function sum. You can see above that the corresponding actual argument nums_1
has been altered in this case, with all of the original negative values set to 0.

The reason that there was no change in integer argument num_tics above but there was in
list argument nums_1 has to do with their types. Lists are mutable. Thus, arguments of type list
will be altered if passed to a function that alters its value. Integers, floats, Booleans, strings, and
tuples, on the other hand, are immutable. Thus, arguments of these types cannot be altered as
a result of any function call.

It is generally better to design functions that do not return results through their arguments. In
most cases, the result should be returned as the function’s return value. What if a function
needs to return more than one function value? The values can be returned in a tuple, as
discussed above.

Your Turn

Enter the following and observe the results.

>>> num = 10 >>>nums_1 = [1,2,3] >>>nums_2 = (1,2,3)
>>> def incr(n): >>>def updates(n): >>>update(nums_2)
>>> incr(num) >>>update(nums_1) >>> ???
>>> num >>>nums_1
??? ???

Concepts and Procedures
1. A function call can be made anywhere within a program in which the return type of the
function is appropriate. (TRUE/FALSE)

2. An expression may contain more than one function call. (TRUE/FALSE)

3. Function calls may contain arguments that are function calls. (TRUE/FALSE)
4. All value-returning functions must contain at least one parameter. (TRUE/FALSE)

5. Every function must have at least one mutable parameter. (TRUE/FALSE)

Problem Solving

1. Suppose there are nine variables, each holding an integer value as shown below, for which
the average of the largest value in each line of variables is to be computed.

 Using functions avg and max, give an expression that computes the average as shown
above.

2. Assume that there exists a Boolean function named isLeapYear that determines if a given
year is a leap year or not. Give an appropriate if statement that prints “Year is a Leap Year” if
the year passed is a leap year, and “Year is Not a Leap Year” otherwise, for variable year.

3. For the following function definition and associated function calls,

3 (a) List all the formal parameters.

3 (b) List all the actual arguments.

4. For the following function, indicate whether each function call is proper or not. If improper,
explain why.

(a) a = 10
b = 20
result = gcd(a, b)

(b) a = 10.0
b = 20
result = gcd(a, b)

(c) a = 20
b = 10
result = gcd(b, a)

(d) a = 10
b = 20
c = 30
result = gcd(gcd(a, b), c)

(e) a = 10
b = 20
c = 30
print(gcd(a, gcd(c, b)))

	More on Functions
	Calling Value-Returning Functions
	Part II - Calling Non-Value-Returning Functions
	Part III - Parameter Passing
	Actual Arguments vs. Formal Parameters

	Part IV - Mutable vs. Immutable Arguments
	Concepts and Procedures
	Problem Solving

