
Program Routines and Functions
You have already been using Python’s built-in functions such as len, range, and others. You
will now look more closely at how functions are used in Python, as well as how to define our
own.

What Is a Function Routine?
A routine is a named group of instructions performing some task. A routine can be invoked
(called) as many times as needed in a given program, as shown below:

When a routine terminates, execution automatically returns to the point from which it was
called. Such routines may be predefined in the programming language, or designed and
implemented by the programmer.
A function is Python’s version of a program routine. Some functions are designed to return a
value, while others are designed for other purposes.

Defining Functions
In addition to the built-in functions of Python, there is the capability to define new functions.
Such functions may be generally useful, or specific to a particular program. The elements of a
function definition are given below:

The first line of a function definition is the function header. A function header starts with the
keyword def, followed by an identifier (avg), which is the function’s name. The function name is
followed by a comma-separated (possibly empty) list of identifiers (n1, n2, n3) called formal
parameters, or simply “parameters.” Following the parameter list is a colon (:). Following the
function header is the body of the function, a suite (program block) containing the function’s
instructions. As with all suites, the statements must be indented at the same level, relative to the
function header.

The number of items in a parameter list indicates the number of values that must be passed to
the function, called actual arguments (or simply “arguments”), such as the variables num1,
num2, and num3 below.

>>> num1 = 10
>>>num2 = 25
>>>num3 = 16

>>>avg(num1,num2,num3)

Functions are generally defined at the top of a program. However, every function must be
defined before it is called.

Value-Returning Functions
A value-returning function is a program routine called for its return value, and is therefore
similar to a mathematical function. Take the simple mathematical function f(x) 5 2x. In this
notation, “x” stands for any numeric value that function f may be applied to, for example, f(2)
5 2x 5 4. Program functions are similarly used, as illustrated below:

Function avg takes three arguments (n1, n2, and n3) and returns the average of the three.
The function call avg(10, 25, 16), therefore, is an expression that evaluates to the returned

function value. This is indicated in the function’s return statement of the form return expr,
where expr may be any expression.

Your Turn

From the Python Shell, first enter the following function, making sure to indent the code as given. Hit
return twice after the last line of the function is entered. Then enter the following function calls and
observe the results.

<<< def avg(n1, n2, n3): <<<avg(40, 10, 25)
 return (n1 + n2 + n3) / 3.0 ???

<<<avg(10, 25, 40) <<<avg(40, 25, 10)
??? ???

Part II - Non-Value-Returning Functions
A non-value-returning function is called not for a returned value, but for its side effects. A
side effect is an action other than returning a function value, such as displaying output on the
screen. There is a fundamental difference in the way that value-returning and non-value-
returning functions are called. A call to a value-returning function is an expression, as for the call
to function

avg: result = avg(10, 25, 16) * factor.

When non-value-returning functions are called, however, the function call is a statement, as
shown below. Since such functions do not have a return value, it is incorrect to use a call to a
non-value-returning function as an expression.

In this example, function displayWelcome is called only for the side-effect of the screen
output produced. Finally, every function in Python is technically a value-returning function since
any function that does not explicitly return a function value (via a return statement) automatically
returns the special value None. We will, however, consider such functions as non-value-
returning functions.

Your Turn

From the Python Shell, first enter the following function, making sure to indent the code as given. Then
enter the following function calls and observe the results.
>>>def hello(name): >>> name = 'John'

print('Hello', name + '!') >>>hello(name)
???

Self-Test Questions
1. The values passed in a given function call in Python are called,
a) formal parameters
b) actual arguments

2. The identifiers of a given Python function providing names for the values passed to it are
called,

a) formal parameters
b) actual arguments

3. Functions can be called as many times as needed in a given program. (TRUE/FALSE)

4. When a given function is called, it is said to be,
a) subrogated
b) invoked
c) activated

5. Which of the following types of functions must contain a return statement,
a) value-returning functions
b) non-value-returning functions

6. Value-returning function calls are,

a) expressions
b) statements

7. Non-value-returning function calls are,
a) expressions
b) statements

8. Which of the following types of routines is meant to produce side effects?
a) value-returning functions
b) non-value-returning functions

Problem Solving

1. Function avg returns the average of three values. Which of the following statements, each
making calls to function avg, are valid? (Assume that all variables are of numeric type.)

a) result = avg(n1, n2)
b) result = avg(n1, n2, avg(n3, n4, n5))
c) result = avg(n1 + n2, n3 + n4, n5 + n6)
d) print(avg(n1, n2, n3))
e) avg(n1, n2, n3)

2. Which of the following statements, each involving calls to function displayWelcome
displaying a welcome message on the screen, are valid?

a) print(displayWelcome)
b) displayWelcome
c) result = displayWelcome()
d) displayWelcome()

3. Write a Python function named zeroCheck that is given three integers, and
returns true if any of the integers is 0, otherwise it returns false.

4. Write a Python function named ordered3 that is passed three integers, and

returns true if the three integers are in order from smallest to largest, otherwise it
returns false.

5. Write a Python function named modCount that is given a positive integer, n,
and a second positive integer, m <= n, and returns how many numbers
between 1 and n are evenly divisible by m.

	Program Routines and Functions
	What Is a Function Routine?
	Defining Functions
	Value-Returning Functions
	Part II - Non-Value-Returning Functions
	Self-Test Questions
	Problem Solving

