
More Python Lists
In this section, you will take a closer look at the assignment of lists. You will also learn a useful
and convenient means of generating lists that the range function cannot produce, called list
comprehensions.

Assigning and Copying Lists
Because of the way that lists are represented in Python, when a variable is assigned to another
variable holding a list, list2 = list1, each variable ends up referring to the same instance of
the list in memory. This is depicted below:

This has important implications. For example, if an element of list1 is changed, then the
corresponding element of list2 will change as well,

>>> list1 = [10, 20, 30, 40]
>>> list2 = list1
>>> list1[0] = 5
>>> list1
[5, 20, 30, 40] change made in list1
>>> list2
[5, 20, 30, 40] change in list1 causes a change in list2

Knowing that variables list1 and list2 refer to the same list explains this behavior. This
issue does not apply to strings and tuples, since they are immutable and therefore cannot be
modified.

When needed, a copy of a list can be made as given below,

list2 = list(list1)

In this case, we get the following results,

 >>> list1 = [10, 20, 30, 40]
>>> list2 = list(list1)
>>> list1[0] = 5
>>> list1
[5, 20, 30, 40] change made in list1
>>> list2
[10, 20, 30, 40] change in list1 does NOT cause any change in list2

When copying lists that have sublists, another means of copying, called deep copy, may be
needed.

Your Turn

From the Python Shell, enter the following and observe the results.

>>>list1 = ['red','blue','green'] >>>list1 = ['red', 'blue', 'green']

>>> list2 = list1 >>>list2 = list(list1)

>>>list1[2] = 'yellow' >>>list1[2] = 'yellow'

>>>list1 >>>list1

??? ???

>>>list2 >>>list2

??? ???

Part II - List Comprehensions
The range function allows for the generation of sequences of integers in fixed increments.
List comprehensions in Python can be used to generate more varied sequences. Example
list comprehensions are given below:

In the table above, (a) generates a list of squares of the integers in list [1, 2, 3]. In (b),
squares are generated for each value in range(5). In (c), only positive elements of list nums
are included in the resulting list. In (d), a list containing the character encoding values in the
string 'Hello' is created. Finally, in (e), tuple vowels is used for generating a list containing
only the vowels in string w.

Your Turn

From the Python Shell, enter the following and observe the results.

>>>temperatures = [88, 94, 97, 89, 101, 98, 102, 95, 100]
>>> [t for t in temperatures if t >= 100]
???

>>> [(t-32) * 5/9 for t in temperatures]

???

Concepts and Procedures

1. For list1 = [1, 2, 3, 4] and list2 = [5, 6, 7, 8], give the values of
list1[0] and list2[0] where indicated after the following assignments.

a) list1[0] = 10 and list 2[0] = 50
b) list2 = list1
c) list2[0] = 15
d) list1[0] = 0

2. Give an appropriate list comprehension for each of the following.
a) Producing a list of consonants that appear in string variable w.

b) Producing a list of numbers between 1 and 100 that are divisible by 3.

c) Producing a list of numbers, zero_values, from a list of floating-point values,

data_values, that are within some distance, epsilon, from 0.

Problem Solving

1. Write a Python program that prompts the user to enter a list of first names and stores
them in a list. The program should display how many times the letter 'a' appears within
the list.

2. Write a Python program that prompts the user to enter a list of words and stores in a list
only those words whose first letter occurs again within the word (for example, 'Baboon').
The program should display the resulting list.

3. Modify the Password Encryption/Decryption program in the chapter so that it allows the

user to continue to encrypt and decrypt passwords until they quit.

4. Modify the Password Encryption/Decryption program in the chapter so that the program
rejects any en- tered password for encryption that is not considered “secure” enough. A
password is considered secure if it contains at least eight characters, with at least one
digit and one special character (!, #, etc).

5. Modify the Encryption/Decryption program in the chapter so that a new encryption key is

randomly generated each time the program is executed. (See the Python 3
Programmers’ Reference for information on the Random module.)

	More Python Lists
	Assigning and Copying Lists
	Part II - List Comprehensions
	Concepts and Procedures
	Problem Solving

