
Password Encryption/Decryption Program
The following program will encrypt and decrypt passwords containing uppercase/lowercase
characters, digits, and special characters. This program utilizes the following programming
features:

➤ for loop ➤ nested sequences (tuples)

Example program execution is given below:

Task: In IDLE, open a new project and save at as Encryption_yourLastName. Copy the code
from the sample on the next page. Test and revise the program, as needed.

Notes:
Lines 4–9 perform the initialization needed for the program. Variable password_out is used
to hold the encrypted or decrypted output of the program. Since the output string is created by
appending to it each translated character one at a time, it is initialized to the empty string.

Variable encryption_key holds the tuple (of tuples) used to encrypt/decrypt passwords. This
tuple contains as elements tuples of length two,

encryption_key = (('a', 'm'), ('b', 'h'), etc.

The first tuple, ('a', 'm'), for example, is used to encode the letter 'a'. Thus, when encrypting a
given file, each occurrence of 'a' is replaced by the letter 'm'. When decrypting, the reverse is
done - all occurrences of letter 'm' are replaced by the letter 'a'.

Line 12 contains the program greeting. Line 15 inputs from the user whether they wish to
encrypt or decrypt a password. Based on the response, variable encrypting is set to either
True or False (line 20).

The program section in lines 26–47 performs the encryption and decryption. If variable
encrypting is equal to True, then from_index is set to 0 and to_index is set to 1,
causing the “direction” of the substitution of letters to go from the first in the pair to the second
('a' re- placed by 'm'). When encrypting is False (and thus decryption should be performed),
the direction of the substitution is from the second of the pair to the first ('m' replaced by 'a').

Variable case_changer (line 33) is set to the difference between the encoding of the
lowercase and the uppercase letters (recall that the encoding of the lowercase letters is greater
than that of the uppercase letters). The for loop at line 38 performs the iteration over the pairs of
letters in the encryption key. The first time through the loop, t = ('a', 'm'). Thus,
t[from_index] and t[to_index] refer to each of the characters in the pair. Since all
characters in the encryption key are in lowercase, when uppercase letters are found in the
password, they are converted to lowercase by use of variable case_changer (line 43) before
being compared to the (lowercase) letters in the encryption key. This works because the
character encoding of all lowercase letters is greater than the corresponding uppercase version,

>>> ord (‘A’) >>> ord (‘a’) >>> ord (‘a’) - ord (‘A’)
65 97 32

A similar approach is used for converting from lowercase back to uppercase. Finally, on lines
50–53, the encrypted and decrypted versions of the password are displayed to the user.

The substitution occurs in the nested for loops in lines 35–47. The outer for loop iterates
variable ch over each character in the entered password (to be encrypted or decrypted). The
first step of the outer for loop is to initialize letter_found to False. This variable is used to
indicate if each character is a (uppercase or lowercase) letter. If so, it is replaced by its
corresponding encoding character. If not, it must be a digit or special character, and thus
appended as is (line 47). The code on lines 39–41 and lines 42–46 is similar to each other. The
only difference is that since the letters in

the encryption key are all lowercase, any uppercase letters in the password need to be
converted to lowercase before being compared to the letters in the key.

	Password Encryption/Decryption Program

