
Iterative Control
An iterative control statement is a control statement providing the repeated execution of a
set of instructions. An iterative control structure is a set of instructions and the iterative control
statement(s) controlling their execution. Because of their repeated execution, iterative control
structures are commonly referred to as “loops.” We look at one specific iterative control
statement next, the while statement.

While Statement
A while statement is an iterative control statement that repeatedly executes a set of statements
based on a provided Boolean expression (condition). All iterative control needed in a program
can be achieved by use of the while statement. The table below contains an example of a while
loop in Python that sums the first n integers, for a given (positive) value n entered by the user.

As long as the condition of a while statement is true, the statements within the loop are
(re)executed. Once the condition becomes false, the iteration terminates and control continues
with the first statement after the while loop. Note that it is possible that the first time a loop is
reached, the condition may be false, and therefore the loop would never be executed.
Suppose, for the example in the figure, that the user enters the value 3. Since variable
current is initialized to 1 (referred to as a counter variable), the first time the while statement
is reached, current ,5 3 is true. Thus, the statements within the loop are executed and sum
is updated to sum 1 current. Since sum is initialized to 0, sum becomes 1. Similarly,
current is updated and assigned to 2. After the first time through the loop, control returns to
the “top” of the loop. The condition is again found to be true and thus the loop is executed a
second time. In this iteration, both sum and current become 3. In the next iteration, the
condition is still true, and therefore, the loop is executed a third time. This time, sum becomes 6
and current becomes 4. Thus, when control returns to the top of the loop, the condition is
False and the loop terminates. The final value of sum therefore is 6(1 1 2 1 3). This
process is summarized below:

 Input Error Checking
The while statement is well suited for input error checking in a program. This is demonstrated
in the revised version of the temperature conversion program, reproduced below:

The difference in this program from the previous version is that rather than terminating on
invalid input, the program continues to prompt the user until a valid temperature conversion,
'F' or 'C', is entered. Thus, the associated input statement is contained within a while
loop that keeps iterating as long as variable which contains an invalid value. Once the user
enters a proper value, the loop terminates allowing the program to continue.

Your Turn

In IDLE, create and run a program containing the code below and observe the results. Make sure to indent
exactly.

n = 10 n = 10
sum = 0 sum = 0
current = 1 current = 1
while current <= n: while current <= n:
 sum = sum + current sum = sum + current
 current = current + 1 current = current + 1
print (sum) print (sum)

??? ???

Part II - Infinite loops
An infinite loop is an iterative control structure that never terminates (or eventually terminates
with a system error). Infinite loops are generally the result of programming errors. For example,
if the condition of a while loop can never be false, an infinite loop will result when executed.
Consider if the program segment in Figure 3-17, reproduced in Figure 3-20, omitted the
statement incrementing variable current. Since current is initialized to 1, it would remain 1
in all iterations, causing the expression current ,5 n to be always be true. Thus, the loop
would never terminate.

Such infinite loops can cause a program to “hang,” that is, to be unresponsive to the user. In
such cases, the program must be terminated by use of some special keyboard input (such as
ctrl-C) to interrupt the execution.

Your Turn

In IDLE, create and run a program containing the code below and observe the results. Make sure to indent
the code exactly as shown. To terminate an executing loop, hit ctrl-C.

while True:
 print (‘Looping’)
???
n = 10 n = 10
sum = 0 sum = 0
current = 1 current = 1
while current <= n: while current <= n:
 sum = sum + current sum = sum + current
 current = current + 1 current = current + 1
print (sum) print (sum)

??? ???

Part III - Definite vs. Indefinite Loops
A definite loop is a program loop in which the number of times the loop will iterate can be
determined before the loop is executed. For example, following code is a definite loop,

sum = 0
current = 1

n = input('Enter value: ')

while current <= n:
sum = sum + current

current = current + 1

Although it is not known what the value of n will be until the input statement is executed, its
value
is known by the time the while loop is reached. Thus, it will execute “n times.”

An indefinite loop is a program loop in which the number of times that the loop will iterate
cannot be determined before the loop is executed. Consider the while loop in the temperature
conversion program.

which = input("Enter selection: ")
while which != 'F' and which != 'C':

which = input("Please enter 'F' or 'C': ")

In this case, the number of times that the loop will be executed depends on how many times the
user mistypes the input. Thus, a while statement can be used to construct both definite and
indefinite loops. In the next chapter we look at the for statement, specifically suited for the
construction of definite loops.

Boolean Flags and Indefinite Loops
Often the condition of a given while loop is denoted by a single Boolean variable, called a
Boolean flag. This is shown in the sample code on the next page

Boolean variable valid_entries is a Boolean flag, controlling the while loop at line 12. If the
mileage of the last oil change is greater than the current mileage, an error message is displayed
(lines 17–18), and the while loop is re-executed. If the current mileage is greater than (or equal
to) the mileage of the last oil change, miles_traveled is set to this difference and valid_ entries is
set to True, causing the loop to terminate. Thus, lines 23–28 display either that they are due for
an oil change, an oil change will soon be needed, or there is no immediate need for an oil
change.

Concepts and Procedures
1. A while loop continues to iterate until its condition becomes false. TRUE/FALSE

2. A while loop executes zero or more times. TRUE/FALSE

3. All iteration can be achieved by a while loop. TRUE/FALSE

4. An infinite loop is an iterative control structures that,

a) Loops forever and must be forced to terminate
b) Loops until the program terminates with a system error
c) Both of the above

5. The terms definite loop and indefinite loop are used to indicate whether,

a) A given loop executes at least once
b) The number of times that a loop is executed can be determined before the loop is

executed.
c) Both of the above

6. A Boolean flag is,

a) A variable
b) Has the value True or False
c) Is used as a condition for control statements
d) All of the above

Problem Solving
1. Write a program segment that uses a while loop to add up all the even numbers between
100 and 200, inclusive.

2. The following while loop is meant to multiply a series of integers input by the user, until a
sentinel value of 0 is entered. Indicate any errors in the code given.

product = 1
num = input('Enter first number: ')
while num != 0:
 num = input('Enter first number: ')
 product = product * num
 print('product = ', product)

3. For each of the following, indicate which is a definite loop, and which is an indefinite loop.

a) num = input('Enter a non-zero value: ')
while num 55 0:
 num = input('Enter a non-zero value: ')

 b) num = 0
 while n < 10:

 print 2 ** n
 n = n + 1

	Iterative Control
	While Statement
	Input Error Checking
	Part II - Infinite loops
	Part III - Definite vs. Indefinite Loops
	Boolean Flags and Indefinite Loops
	Concepts and Procedures
	Problem Solving

