

Boolean Expressions (Conditions)

What is a Control Structure?
Control flow is the order that instructions are executed in a program. A control statement is a
statement that determines the control flow of a set of instructions. There are three fundamental
forms of control that programming languages provide—sequential control, selection control, and
iterative control.

Sequential control is an implicit form of control in which instructions are executed in the order
that they are written. A program consisting of only sequential control is referred to as a “straight-
line program.” The program examples in Unit 2 are all straight-line programs. Selection control
is provided by a control statement that selectively executes instructions, while iterative control is
provided by an iterative control statement that repeatedly executes instructions. Each is based
on a given condition. Collectively a set of instructions and the control statements controlling their
execution is called a control structure.

Few programs are straight-line programs. Most use all three forms of control, depicted below:

Part I - Boolean Expressions (Conditions)
The Boolean data type contains two Boolean values, denoted as True and False in Python.
A Boolean expression is an expression that evaluates to a Boolean value. Boolean
expressions are used to denote the conditions for selection and iterative control statements.

Relational Operators
The relational operators in Python perform the usual comparison operations, shown below.
Relational expressions are a type of Boolean expression, since they evaluate to a Boolean
result. These operators not only apply to numeric values, but to any set of values that has an
ordering, such as strings.

Note the use of the comparison operator, = =, for determining if two values are equal. This,
rather than the (single) equal sign, =, is used since the equal sign is used as the assignment
operator. This is often a source of confusion for new programmers,

num = 10 variable num is assigned the value 10

num == 10 variable num is compared to the value 10

Also note, ! = is used for inequality simply because there is no keyboard character for the
≠symbol.

String values are ordered based on their character encoding, which normally follows a
lexographical (dictionary) ordering. For example, 'Adam' is less than 'Brenda' since the
Unicode (ASCII) value for 'A' is 65, and 'B' is 66. However, 'adam' is greater than (comes
after) 'Brenda' since the Unicode encoding of lowercase letters (97, 98, . . .) comes after the
encoding of uppercase letters (65, 66, . . .).

(Remember that the encoding of any character can be obtained by use of the ord function.)

Your Turn

From the Python Shell, enter the following and observe the results.

>>> 15 = = 23 >>> ‘13’ , ‘29’

??? ???

>>> 15 != 23 >>> ‘13’ < ‘9’

??? ???

>>> 15 <= 23 >>> ‘13’ > ‘7’

??? ???

>>> ‘Hello’ = = ‘Hello’ >>> ‘Hello’ < ‘Zebra’

??? ???

Part II - Membership Operators
Python provides a convenient pair of membership operators. These operators can be used to
easily determine if a particular value occurs within a specified list of values. The membership
operators are given in Figure 3-4.

The in operator is used to determine if a specific value is in a given list, returning True if
found, and False otherwise. The not in operator returns the opposite result. The list of
values surrounded by matching parentheses in the figure are called tuples in Python.

 The membership operators can also be used to check if a given string occurs within another
string,

... 'Dr.' in 'Dr. Madison'
True

As with the relational operators, the membership operators can be used to
construct Boolean expressions.

Your Turn

From the Python Shell, enter the following and observe the results.

>>> 15 in (50, 20, 15) >>> grade = 'B'
??? >>> grade in ('A','B','C','D','F')
 ???

>>> 15 not in (50, 20, 15) >>> city = 'Hartford'
??? >>> city in ('Boston','Chicago’, ‘NY’)

 ???

>>> .33 in (.24, .37, .56) >>> “art” in “heart”

??? ???

Part III - Boolean Operators
George Boole, in the mid-1800s, developed what we now call Boolean algebra. His goal was
to develop an algebra based on true/false rather than numerical values. Boolean algebra
contains a set of Boolean (logical) operators, denoted by and, or, and not in Python.
These logical operators can be used to construct arbitrarily complex Boolean expressions. The
Boolean operators are shown below

Logical and is true only when both its operands are true—otherwise, it is false. Logical or is
true when either or both of its operands are true, and thus false only when both operands are
false. Logical not simply reverses truth values—not False equals True, and not True
equals False.

One must be cautious when using Boolean operators. For example, in mathematics, to denote
that a value is within a certain range is written as

 1 <= num <= 10

In most programming languages, however, this expression does not make sense. To see why,
let’s assume that num has the value 15. The expression would then be evaluated as follows,

1 <= num <= 10 ➝ 1 <= 15 <= 10 ➝ ?!?

It does not make sense to check if True is less than or equal to 10. (Some programming
languages would generate a mixed-type expression error for this.) The correct way of denoting
the condition is by use of the Boolean and operator,

1 <= num and num <= 10

In some languages (such as Python), Boolean values True and False have integer values 1
and 0, respectively. In such cases, the expression 1 <= num <= 10 would evaluate to True ,5
10 would evaluate to 1 <= 10, which equals True. This would not be the correct result for
this expression, however. Let’s see what we get when we do evaluate this expression in the
Python shell,

>>>num = 15
>>>1 <= num <= 10
False

We actually get the correct result, False. So what is going on here? The answer is that
Python is playing a trick here. For Boolean expressions of the particular form,

value1 <= var <= value2

Python automatically rewrites this before performing the evaluation,

value1 <= var and var <= value2

Thus, it is important to note that expressions of this form are handled in a special way in
Python, and would not be proper to use in most other programming languages.

One must also be careful in the use of and/or Boolean operators. For example, not(num = =
0 and num = = 1) is True for any value of num, as is (num != 0) or (num != 1), and
therefore are not useful expressions. The Boolean expression num < 0 and num > 10 is also
useless since it is always False.

Finally, Boolean literals True and False are never quoted. Doing so would cause them to be
taken as string values ('True'). And as we saw, Boolean expressions do not necessarily

contain Boolean operators. For example, 10 < = 20 is a Boolean expression. By definition,
Boolean literals True and False are Boolean expressions as well.

Your Turn

From the Python Shell, enter the following and observe the results.

>>> True and False >>>(12 < 5) and (12 < 3)

??? ???

>>>True or False >>>(12 < 5) or (12 > 3)

??? ???

>>>not(True) and False >>>not(12 < 5) or (12 > 3)

??? ???

>>> not(True and False) >>> not(12 < 5 or 12 > 3)

??? ???

Part IV - Operator Precedence and Boolean Expressions
Operator precedence also applies to Boolean operators. Since Boolean expressions can
contain arithmetic as well as relational and Boolean operators, the precedence of all operators
needs to be collectively applied. An updated operator precedence table below.

As before, in the table, higher-priority operators are placed above lower-priority ones. Thus, we
see that all arithmetic operators are performed before any relational or Boolean operator,

10 + 20 < 20 + 30 ➝ 30 < 50 ➝ True

In addition, all of the relational operators are performed before any Boolean operator,

10 < 20 and 30 < 20 ➝ True and False ➝ False

10 < 20 or 30 < 20 ➝ True or False ➝ True

And as with arithmetic operators, Boolean operators have various levels of precedence. Unary
Boolean operator not has higher precedence than and, and Boolean operator and has higher
precedence than or.

10 < 20 and 30 < 20 or 30 < 40 ➝ True and False or True

 ➝ False or True ➝ True

not 10 < 20 or 30 < 20 ➝ not True or False

 ➝ False or False ➝ False

As with arithmetic expressions, it is good programming practice to use parentheses, even if not
needed, to add clarity and enhance readability. Thus, the above expressions would be better
written by denoting at least some of the subexpressions,

(10 < 20 and 30 < 20) or (30 < 40)
(not 10 < 20) or (30 < 20)

if not all subexpressions,

((10 < 20) and (30 < 20)) or (30 < 40)
(not (10 < 20)) or (30 < 20)

Finally, note from the table above that all relational and Boolean operators associate
from left to right.

Your Turn

From the Python Shell, enter the following and observe the results.

>>> not True and False >>> 12 < 5) and (12 > 3)

??? ???

>>> not(True and False or True >>> not(12 < 5 or 12 > 30)

??? ???

Part V - More Boolean Expressions

Short-Circuit (Lazy) Evaluation
There are differences in how Boolean expressions are evaluated in different programming
languages. For logical and, if the first operand evaluates to false, then regardless of the value of
the second operand, the expression is false. Similarly, for logical or, if the first operand
evaluates to true, regardless of the value of the second operand, the expression is true.
Because of this, some programming languages do not evaluate the second operand when the
result is known by the first operand alone, called short-circuit (lazy) evaluation. Subtle errors
can result if the programmer is not aware of this. For example, the expression

if n != 0 and 1/n < tolerance:

would evaluate without error for all values of n when short-circuit evaluation is used. If
programming in a language not using short-circuit evaluation, however, a “divide by zero” error
would result when n is equal to 0. In such cases, the proper construction would be,

if n != 0:
if 1/n < tolerance:

Logically Equivalent Boolean Expressions
In numerical algebra, there are arithmetically equivalent expressions of different form. For
example, x(y 1 z) and xy 1 xz are equivalent for any numerical values x, y, and z.
Similarly, there are logically equivalent Boolean expressions of different form. Some examples
are below:

The range of values satisfying each set of expressions is shaded in the figure. Both expressions
in (1) are true for any value except 0. The expressions in (2) are true for any value except 0
and 6. The expressions in (3) are only true for values in the range 0 through 6, inclusive. The
expressions in (4) are true for all values except 0 through 6, inclusive. The table below lists
common forms of logically equivalent expressions.

The last two equivalences above are referred to as De Morgan’s Laws.

Concepts and Procedures
1. Which of the three forms of control is an implicit form of control?

2. What is meant by a “straight-line” program?

3. What is the difference between a control statement and a control structure?

4. Three forms of control in programming are sequential, selection, and ____________ control.

5. Which of the following expressions evaluate to True?
a) 10 <= 8
b) 8 <= 10
c) 10 = = 8
d) 10 != 8
e) '8' < '10'

6. Which of the following Boolean expressions evaluate to True?
a) 'Dave' < 'Ed'

b) 'dave' < 'Ed'
c) 'Dave' < 'Dale'

7. What is the value of variable num after the following is executed?

a) <<< num = 10
b) <<<num = num + 5
c) <<<num = = 20
d) <<<num = num + 1

8. What does the following expression evaluate to for name equal to 'Ann'?

name in ('Jacob', 'MaryAnn', 'Thomas')

9. Evaluate the following Boolean expressions using the operator precedence rules of Python.
a) 10 <= 8 and 5 != 3
b) 10 <= 8 and 5 = = 3 or 14 < 5

10. Which one of the following Boolean expressions is not logically equivalent to the other two?
a) not(num < 0 or num > 10)
b) num > 0 and num < 10
c) num <= 0 and num <= 10

Problem Solving

1. Write a Python program in which the user enters either 'A', 'B', or 'C'. If 'A' is entered, the
program should display the word 'Apple'; if 'B' is entered, it displays 'Banana'; and if 'C' is
entered, it displays 'Coconut'. Use nested if statements for this.

2. Repeat question 1 using an if statement with elif headers instead.

	Boolean Expressions (Conditions)
	What is a Control Structure?

	Sequential control is an implicit form of control in which instructions are executed in the order that they are written. A program consisting of only sequential control is referred to as a “straight-line program.” The program examples in Unit 2 are al...
	Few programs are straight-line programs. Most use all three forms of control, depicted below:
	Part I - Boolean Expressions (Conditions)
	Relational Operators

	Part II - Membership Operators
	Part III - Boolean Operators
	Part IV - Operator Precedence and Boolean Expressions
	Part V - More Boolean Expressions
	Short-Circuit (Lazy) Evaluation
	Logically Equivalent Boolean Expressions
	Concepts and Procedures
	Problem Solving

