
Variables and Identifiers
So far, you have only looked at literal values in programs. However, the true usefulness of a
computer program is the ability to operate on different values each time the program is
executed. This is provided by the notion of a variable.

What Is a Variable?
A variable is a name (identifier) that is associated with a value, as depicted below:

A variable can be assigned different values during a program’s execution—hence, the name
“variable.” Wherever a variable appears in a program (except on the left-hand side of an
assignment statement), it is the value associated with the variable that is used, and not the
variable’s name,

num 1 1 ➝ 10 1 1 ➝ 11

Variables are assigned values by use of the assignment operator, =,
num = 10 num = num + 1

Assignment statements often look wrong to novice programmers. Mathematically, num = num
+ 1 does not make sense. In computing, however, it is used to increment the value of a given
variable by one. It is more appropriate, therefore, to think of the = symbol as an arrow symbol,
as shown below:

When thought of this way, it makes clear that the right side of an assignment is
evaluated first, then the result is assigned to the variable on the left. An arrow
symbol is not used simply because there is no such character on a standard
computer keyboard. Variables may also be assigned to the value of another
variable (or expression, discussed below) as shown below:

Variables num and k are both associated with the same literal value 10 in
memory. One way to see this is by use of built-in function id,

 >>> id(num) >>> id(k)
505494040 505494040

The id function produces a unique number identifying a specific value (object) in
memory. Since variables are meant to be distinct, it would appear that this sharing
of values would cause problems. Specifically, if the value of num changed, would
variable k change along with it? This cannot happen in this case because the
variables refer to integer values, and integer values are immutable. An immutable
value is a value that cannot be changed. Thus, both will continue to refer to the
same value until one (or both) of them is reassigned, as seen below:

If no other variable references the memory location of the original value, the memory
location is deallocated (that is, it is made available for reuse).

Finally, in Python the same variable can be associated with values of different type during
program execution, as shown below.

var = 12 integer
var = 12.45 float
var = 'Hello' string

Your Turn

From the Python Shell, enter the following and observe the results.

>>>num = 10 >>> k = 25
>>> num >>> k
??? ???
>>>id(num) >>> num
??? ???

 >>> id(k)
 ???
 >>> id(num)
 ???

>>>num = 50
>>>num
???

 >>> id(num)
 ???

>>>k = num >>> k = k + 1
>>> k >>> k
??? ???
>>>id(k) >>> id(num)
??? ???

 >>> id(num) >>> id(k)
 ??? ???

Part II - Variable Assignment and Keyboard Input
The value that is assigned to a given variable does not have to be specified in the program, as
demonstrated in previous examples. The value can come from the user by use of the input
function introduced in Chapter 1,

 >>> name = input('What is your first name?')
What is your first name? John

In this case, the variable name is assigned the string 'John'. If the user hit return without
entering any value, name would be assigned to the empty string ('').

All input is returned by the input function as a string type. For the input of numeric values, the
response must be converted to the appropriate type. Python provides built-in type conversion
functions int() and float() for this purpose, as shown below for a gpa calculation
program,

line = input('How many credits do you have?')
num_credits = int(line)
line = input('What is your grade point average?')
gpa = float(line)

Here, the entered number of credits, say '24', is converted to the equivalent integer value,
24, before being assigned to variable num_credits. For input of the gpa, the entered value,

say '3.2', is converted to the equivalent floating-point value, 3.2. Note that the
program lines above could be combined as follows,

num_credits 5 int(input('How many credits do you have? '))
gpa 5 float(input('What is your grade point average? '))

Your Turn

From the Python Shell, enter the following and observe the results.

>>> num = input('Enter number: ') >>> num = input('Enter name: ')

Enter number: 5 Enter name: John

??? ???

>>> num = int(input('Enter number: ')) >>> num = int(input('Enter name: '))

Enter number: 5 Enter name: John

??? ???

Part III - Identifiers
An identifier is a sequence of one or more characters used to provide a name for a
given program element. Variable names line, num_credits, and gpa are

each identifiers. Python is case sensitive, thus, Line is different from line.
Identifiers may contain letters and digits, but cannot begin with a digit. The
underscore character, _, is also allowed to aid in the readability of long identifier
names. It should not be used as the first character, however, as identifiers
beginning with an underscore have special meaning in Python.

Spaces are not allowed as part of an identifier. This is a common error since some
operating systems allow spaces within file names. In programming languages,
however, spaces are used to delimit (separate) distinct syntactic entities. Thus, any
identifier containing a space character would be considered two separate
identifiers. Examples of valid and invalid identifiers in Python are shown below:

Your Turn

From the Python Shell, enter the following and observe the results.

>>>spring2014SemCredits = 15 >>> spring2014-sem-credits = 15

??? ???

>>>spring2014_sem_credits = 15 >>> 2014SpringSemesterCredits = 15

??? ???

Keywords and Other Predefined Identifiers in Python

A keyword is an identifier that has predefined meaning in a programming language.
Therefore, keywords cannot be used as “regular” identifiers. Doing so will result in a syntax
error, as demonstrated in the attempted assignment to keyword and below,

>>> and 5 10
SyntaxError: invalid syntax

The keywords in Python are listed above. To display the keywords, type help() in the
Python shell, and then type keywords (type 'q' to quit).

 There are other predefined identifiers that can be used as regular identifiers, but should not be.
This includes float, int, print, exit, and quit, for example. A simple way to check
whether a given identifier is a keyword in Python is given below,

>>> 'exit' in dir(builtins)
True

>>> 'exit_program' in dir(builtins)
False

Your Turn

From the Python Shell, enter the following and observe the results.

>>>yield = 1000 >>> print('Hello')

??? ???

>>>Yield = 1000 >>> print = 10
??? >>> print (‘Hello’)
 ???

Concepts
1. Which of the following are valid assignment statements, in which only variable k has already been
assigned a value?

(a) n = k + 1 (b) n = n + 1 (c) n + k = 10 (d) n + 1 = 1

2. What is the value of variable num after the following assignment statements are executed?
num = 0
num = num + 1
num = num + 5

3. Do variables num and k reference the same memory location after the following instructions
are executed? (YES / NO)

num = 10
k = num
num = num + 1

4. Which of the following are valid identifiers in Python?
(a) errors (b) error_count (c) error-count

5. Which of the following are keywords in Python?
(a) and (b) As (c) while (d) until (e) NOT

6. Which one of the following is correct for reading and storing an integer value from
the user?

(a) n = int_input('Enter: ') (b) n = int(input('Enter: '))

Problem Solving
1. Regarding variable assignment,

(a) What is the value of variables num1 and num2 after the following instructions are executed?
num = 0
k = 5
num1 = num + k * 2
num2 = num + k * 2

(b) Are the values id(num1) and id(num2) equal after the last statement is executed?

2. Regarding the input function in Python,
(a) Give an instruction that prompts the user for their last name and stores it

in a variable named last_ name.

(b) Give an instruction that prompts the user for their age and stores it as an integer value
named age.

(c) Give an instruction that prompts the user for their temperature and stores it as a float
named current_temperature.

3. Regarding keywords and other predefined identifiers in Python, give the result for each of the
following,

(a) 'int' in dir(builtins)
(b) 'import' in dir(builtins)

	Variables and Identifiers
	What Is a Variable?
	Part II - Variable Assignment and Keyboard Input
	Part III - Identifiers
	Keywords and Other Predefined Identifiers in Python

	Concepts
	Problem Solving

	Your Turn
	From the Python Shell, enter the following and observe the results.
	>>>num = 10 >>> k = 25
	>>> num >>> k
	??? ???
	>>>id(num) >>> num
	??? ???
	>>>num = 50
	>>>num
	???
	>>>k = num >>> k = k + 1
	>>> k >>> k
	??? ???
	>>>id(k) >>> id(num)
	??? ???

