
Literals
To take something literally is to take it at “face value.” The same is true of literals in
programming. A literal is a sequence of one or more characters that stands for itself,
such as the literal 12. We look at numeric literals in Python next.

Part I - Numeric Literals
A numeric literal is a literal containing only the digits 0–9, an optional sign character (1
or 2), and a possible decimal point. (The letter e is also used in exponential notation,
shown in the next subsection). If a numeric literal contains a decimal point, then it
denotes a floating-point value, or “float” (e.g., 10.24); otherwise, it denotes an integer
value (e.g., 10). Commas are never used in numeric literals. The chart below gives
additional examples of numeric literals in Python.

Since numeric literals without a provided sign character denote positive values, an explicit
positive sign character is rarely used. Next we look at how numeric values are
represented in a computer system.

Your Turn

From the Python Shell, enter the following:

... 1024 ... 210241024

??? ??? ???

... 1,024 ... 0.1024 ... 1,024.46

??? ??? ???

Limits of Range in Floating-Point Representation

There is no limit to the size of an integer that can be represented in Python. Floating-point
values, however, have both a limited range and a limited precision. Python uses a double-
precision standard format (IEEE 754) providing a range of 102308 to 10308 with 16 to 17 digits of
precision. To denote such a range of values, floating-points can be represented in scientific
notation,

9.0045602e15 (9.0045602 3 105, 8 digits of precision)

1.006249505236801e8 (1.006249505236801 3 108, 16 digits of
precision)

4.239e216 (4.239 3 10216, 4 digits of precision)

It is important to understand the limitations of floating-point representation. For example, the
multiplication of two values may result in arithmetic overflow, a condition that occurs when a
calculated result is too large in magnitude (size) to be represented,

> > > 1.5e200 * 2.0e210

> > > inf

This results in the special value inf (“infinity”) rather than the arithmetically correct
result 3.0e410, indicating that arithmetic overflow has occurred. Similarly, the division of
two numbers may result in arithmetic underflow, a condition that occurs when a
calculated result is too small in magnitude to be represented,

> > > 1.0e2300 / 1.0e100 0.0

This results in 0.0 rather than the arithmetically correct result 1.0e2400, indicating that
arithmetic underflow has occurred. We next look at possible effects resulting from the
limited precision in floating-point representation.

Your Turn

From the Python Shell, enter the following and observe the results.

> > > 1.2e200 * 2.4e100 > > > 1.2e200 / 2.4e100

??? ???

> > > 1.2e200 * 2.4e200 > > > 1.2e2200 / 2.4e200

??? ???

 Limits of Precision in Floating-Point Representation

Arithmetic overflow and arithmetic underflow are relatively easily detected. The loss of
precision that can result in a calculated result, however, is a much more subtle issue. For
example, 1/3 is equal to the infinitely repeating decimal .33333333 . . ., which also has
repeating digits in base two,.010101010. . . . Since any floating-point representation
necessarily contains only a finite number

of digits, what is stored for many floating-point values is only an approximation of the true
value, as can be demonstrated in Python,

> > > 1/3

.3333333333333333

Here, the repeating decimal ends after the 16th digit. Consider, therefore, the following,

> > > 3 ⋆ (1/3) 1.0

Given the value of 1/3 above, we would expect the result to be .9999999999999999,
so what is happening here? The answer is that Python displays a rounded result to keep
the number of digits displayed manageable. However, the representation of 1/3 as
.3333333333333333 remains the same, as demonstrated by the following,

> > > 1/3 1 1/3 1 1/3 1 1/3 1 1/3 1 1/3

1.9999999999999998

In this case we get a result that reflects the representation of 1/3 as an approximation,
since the last digit is 8, and not 9. However, if we use multiplication instead, we again get
the rounded value displayed,

> > > 6 * (1/3)

2.0

The bottom line, therefore, is that no matter how Python chooses to display calculated results, the
value stored is limited in both the range of numbers that can be represented and the degree of
precision. For most everyday applications, this slight loss in accuracy is of no practical concern.

However, in scientific computing and other applications in which precise calculations are
required, this is something that the programmer must be keenly aware of.

Your Turn

From the Python Shell, enter the following and observe the results.

> > > 1/10 > > > 6 * (1/10)

??? ???

> > > 1/10 1 1/10 1 1/10 > > > 6 * 1/10

??? ???

> > > 10 * (1/10)

???

Since any floating-point representation contains only a finite number of digits, what is
stored for many floating-point values is only an approximation of the true value.

Built-in format Function
Because floating-point values may contain an arbitrary number of decimal places, the
built-in format function can be used to produce a numeric string version of the value
containing a specific number of decimal places,

> > > 12/5 > > > 5/7

2.4 0.7142857142857143

> > > format(12/5, '.2f') > > > format(5/7, '.2f')

'2.40' '0.71'

In these examples, format specifier '.2f' rounds the result to two decimal places of
accuracy in the string produced. For very large (or very small) values 'e' can be used
as a format specifier,

... format(2 ** 100, '.6e') '1.267651e130'

In this case, the value is formatted in scientific notation, with six decimal places of
precision. Formatted numeric string values are useful when displaying results in which
only a certain number of decimal places need to be displayed,

without use of > > > tax 5 0.08

format specifier > > > print('Your cost: $', (1 1 tax) * 12.99)

Your cost: $ 14.029200000000001

with use of > > > print('Your cost: $', format((1 1 tax) * format
specifier 12.99, '.2f'))

 Your cost: $ 14.03

Finally, a comma in the format specifier adds comma separators to the result,

> > > format(13402.25, ',.2f') 13,402.24

We will next see the use of format specifiers for formatting string values as well.

Your Turn

From the Python Shell, enter the following and observe the results.

> > > format(11/12, '.2f') > > > format(11/12, '.2e')

??? ???

> > > format(11/12, '.3f') > > > format(11/12, '.3e')

??? ???

 Part II - String Literals
Numerical values are not the only literal values in programming. String literals, or
“strings,” rep- resent a sequence of characters,

'Hello' 'Smith, John' "Baltimore, Maryland 21210"

In Python, string literals may be delimited (surrounded) by a matching pair of either single
(') or double (") quotes. Strings must be contained all on one line (except when delimited
by triple quotes.) We have already seen the use of strings in Chapter 1 for displaying
screen output,

> > > print('Welcome to Python!') Welcome to Python!

Additional examples of string literals are given below:

As shown in the figure, a string may contain zero or more characters, including letters,
digits, special characters, and blanks. A string consisting of only a pair of matching
quotes (with nothing in between) is called the empty string, which is different from a
string containing only blank characters. Both blank strings and the empty string have their
uses, as we will see. Strings may also contain quote characters as long as different
quotes are used to delimit the string,

"Jennifer Smith's Friend"

If this string were delimited with single quotes, the apostrophe (single quote) would be
considered the matching closing quote of the opening quote, leaving the last final quote
unmatched,

'Jennifer Smith's Friend' … matching quote?

Thus, Python allows the use of more than one type of quote for such situations. (The
convention used in the text will be to use single quotes for delimiting strings, and only use
double quotes when needed.)

Your Turn

From the Python Shell, enter the following and observe the results.

 > > > print('Hello') > > > print('Hello”) > > > print(“Hello”)

 > > > print('Friend') > > > print(“Friend’) > > > print(“Friend”)

A string literal, or string, is a sequence of characters denoted by a pair of matching
single or double (and sometimes triple) quotes in Python.

The Representation of Character Values
There needs to be a way to encode (represent) characters within a computer. Although
various encoding schemes have been developed, the Unicode encoding scheme is
intended to be a universal encoding scheme. Unicode is actually a collection of different
encoding schemes utilizing between 8 and 32 bits for each character. The default
encoding in Python uses UTF-8, an 8-bit encoding compatible with ASCII, an older, still
widely used encoding scheme.

Currently, there are over 100,000 Unicode-defined characters for many of the languages
around the world. Unicode is capable of defining more than 4 billion characters. Thus, all
the world’s languages, both past and present, can potentially be encoded within Unicode.
A partial listing of the ASCII-compatible UTF-8 encoding scheme is given below:

UTF-8 encodes characters that have an ordering with sequential numerical values. For
example, 'A' is encoded as 01000001 (65), 'B' is encoded as 01000010 (66), and
so on. This is true for character digits as well, '0' is encoded as 00110000 (48) and
'1' is encoded as 00110001 (49). This underscores the difference between a numeric
representation (that can be used in arithmetic calculations) vs. a number represented as
a string of digit characters (that cannot), as demonstrated in Figure 2-5.

Python has means for converting between a character and its encoding. The ord
function gives the UTF-8 (ASCII) encoding of a given character. For example, ord('A')
is 65. The chr function gives the character for a given encoding value, thus chr(65) is
'A'. While in general there is no need to know the specific encoding of a given
character, there are times when such knowledge can be useful.

Your Turn

From the Python Shell, enter the following and observe the results.

 > > > ord(‘14’) > > > chr(‘35’) > > > chr(‘68’)

??? ??? ???

 > > > ord(‘7’) > > > chr(‘83’) > > > chr(‘128’)

??? ??? ???

Part III - Control Characters

Control characters are special characters that are not displayed on the screen. Rather,
they control the display of output (among other things). Control characters do not have a
corresponding keyboard character. Therefore, they are represented by a combination of
characters called an escape sequence.

An escape sequence begins with an escape character that causes the sequence of
characters following it to “escape” their normal meaning. The backslash (\) serves as the
escape character in Python. For example, the escape sequence '\n', represents the
newline control character, used to begin a new screen line. An example of its use is given
below,

print('Hello\nJennifer Smith')

which is displayed as follows,

Hello Jennifer Smith

Your Turn

From the Python Shell, enter the following and observe the results.

 > > > print('Hello World') > > > print('Hello\nWorld’)

??? ???

 > > > print('Hello World\n') > > > print('Hello\n\nWorld’)

??? ???

 > > > print('Hello World\n\n') > > > print(1, ‘\n’, 2, ‘\n’, 3)

??? ???

 > > > print('\nHello World') >>> print(‘\n’,1,‘\n’,2,‘\n’, 3)

??? ???

Part IV - String Formatting
We saw above the use of built-in function format for controlling how numerical values
are displayed. We now look at how the format function can be used to control how
strings are displayed. As given above, the format function has the form,

format(value, format_specifier)

where value is the value to be displayed, and format_specifier can contain a
combination of formatting options. For example, to produce the string 'Hello' left-
justified in a field width of 20 characters would be done as follows,

format('Hello', '<20') ➝ 'Hello '

 To right-justify the string, the following would be used,

format('Hello', '>20') ➝ ' Hello'

Formatted strings are left-justified by default. To center the string the '^' character is
used: format('Hello', '^20'). Another use of the format function is to create
strings of blank characters, which is sometimes useful,

format(' ', '30') ➝ ' '

Finally blanks, by default, are the fill character for formatted strings. However, a specific
fill character can be specified as shown below,

>>> print('Hello World', format('.', '.<30'), 'Have a Nice Day!')
Hello World Have a Nice Day!

Your Turn

From the Python Shell, enter the following and observe the results.

 >>> print(format('Hello World', ‘^40’))

???

 > > > print(format (‘-’, ‘-<20’), 'Hello World’,
 format (‘-’, ‘-<20’)

???

Part V - Implicit and Explicit Line Joining
Sometimes a program line may be too long to fit in the Python-recommended maximum
length of 79 characters. There are two ways in Python to do deal with such situations—
implicit and explicit line joining. We discuss this next.

Implicit Line Joining
There are certain delimiting characters that allow a logical program line to span more
than one physical line. This includes matching parentheses, square brackets, curly
braces, and triple quotes. For example, the following two program lines are treated as
one logical line,

print('Name:', student_name, 'Address:', student_address, 'Number
of Credits:', total_credits, 'GPA:', current_gpa)

Matching quotes (except for triple quotes, covered later) must be on the same physical
line. For example, the following will generate an error,

print('This program will calculate a restaurant tab for a couple
with a gift certificate, and a restaurant tax of 3%')

We will use this aspect of Python throughout the course.

Explicit Line Joining
In addition to implicit line joining, program lines may be explicitly joined by use of the
backslash (\) character. Program lines that end with a backslash that are not part of a
literal string (that is, within quotes) continue on the following line,

numsecs_1900_dob 5 ((year_birth 2 1900) * avg_numsecs_year) 1 \

((month_birth 2 1) * avg_numsecs_month) 1 \ (day_birth *
numsecs_day)

Part VI - Let’s Apply It—“Hello World Unicode Encoding”
It is a long tradition in computer science to demonstrate a program that simply displays
“Hello World!” as an example of the simplest program possible in a particular
programming language. In Python, the complete Hello World program is comprised of
one program line,

print('Hello World!')

We take a twist on this tradition and give a Python program that displays the Unicode
encoding for each of the characters in the string “Hello World!” instead. This program
utilizes the following programming features:

➤ string literals ➤ print ➤ ord function

The program and program execution are given below:

The statements on lines 1, 3, and 6 are comment statements. They are ignored during
program execution, used to provide information to those reading the program. The print
function on line 4 displays the message ‘Hello World!’. Double quotes are used to delimit
the corresponding string, since the single quotes within it are to be taken literally. The use
of print on line 7 prints out the Unicode encoding, one-by-one, for each of the
characters in the “Hello World!” string. Note from the program execution that there is a
Unicode encoding for the blank character (32), as well as the exclamation mark (33).

Concepts and Procedures

1. Indicate which of the following are valid numeric literals in Python.

(a) 1024 (b) 1,024 (c) 1024.0 (d) 0.25 (e) .45 (f) 0.25110

2. Indicate which of the following exceed the range and/or precision of floating-point
values that can be represented in Python.

(a) 1.89345348392e1301 (c) 2.0424e2320

(b) 1.62123432632322e1300 (d) 1.323232435342327896452e2140

3. Which of the following would result in either overflow or underflow for the floating-point
representation scheme mentioned in the chapter.

(a) 6.25e1240 * 1.24e110 (c) 6.25e1240 / 1.24e110

(b) 2.24e1240 * 1.45e1300 (d) 2.24e2240 / 1.45e1300

4. Exactly what is output by print(format(24.893952, '.3f'))

(a) 24.894 (b) 24.893 (c) 2.48e1

5. Which of the following are valid string literals in Python.
(a) "Hello" (b) 'hello' (c) "Hello' (d) 'Hello there' (e) ''

6. Which of the following results of the ord and chr functions are correct?

(a) ord('1')➝ 49 (b) chr(68)➝ 'd' (c) chr(99)➝ 'c'

7. How many lines of screen output is displayed by the following,
 print('apple\nbanana\ncherry\npeach')

Problem Solving

1. Give the following values in the exponential notation of Python, such that there is only
one significant digit to the left of the decimal point.

(a) 4580.5034 (b) 0.00000046004 (c) 5000402.000000000006

2. Which of the floating-point values in question 1 would exceed the representation of the
precision of floating points typically supported in Python?

3. Regarding the built-in format function in Python,

(a) Use the format function to display the floating-point value in a variable named
result with three decimal digits of precision.

(b) Give a modified version of the format function in (a) so that commas are included in the
displayed results.

4. Give the string of binary digits that represents, in ASCII code,

(a) The string 'Hi!'
(b) The literal string 'I am 24'

6. Give a call to print that is provided one string that displays the following address on
three separate lines.

John Doe

123 Main Street

Anytown, Maryland 21009

7. Use the print function in Python to output It's raining today.

8. Regarding variable assignment,
(a) What is the value of variables num1 and num2 after the following instructions are

executed?
num 5 0

k 5 5

num1 5 num 1 k * 2

num2 5 num 1 k * 2

(b) Are the values id(num1) and id(num2) equal after the last statement is
executed?

9. Regarding the input function in Python,
(a) Give an instruction that prompts the user for their last name and stores it in a

variable named last_ name.

(b) Give an instruction that prompts the user for their age and stores it as an integer
value named age.

(c) Give an instruction that prompts the user for their temperature and stores it as a float

named
current_temperature.

10. Regarding keywords and other predefined identifiers in Python, give the result for
each of the following,

(a) 'int' in dir(builtins)

(b) 'import' in dir(builtins)

	Literals
	Part I - Numeric Literals
	Built-in format Function
	Part II - String Literals
	The Representation of Character Values

	Part III - Control Characters
	Part IV - String Formatting
	Part V - Implicit and Explicit Line Joining
	Implicit Line Joining
	Explicit Line Joining

	Part VI - Let’s Apply It—“Hello World Unicode Encoding”
	Concepts and Procedures
	Problem Solving

