
Computer Software
The first computer programs ever written were for a mechanical computer designed by Charles
Babbage in the mid-1800s. The person who wrote these programs was Ada Lovelace, who was

a talented mathematician. Thus, she is referred
to as “the first computer programmer.” This
section discusses fundamental issues of
computer software.

Computer software is a set of program
instructions, including related data and
documentation, that can be executed by
computer. This can be in the form of
instructions on paper, or in digital form. While
system software is intrinsic to a computer
system, application software fulfills users’
needs, such as a photo-editing program.

Part I: Syntax, Semantics, and Program Translation
Programming languages (called “artificial languages”) are languages just as “natural languages”
such as English and Mandarin (Chinese). Syntax and semantics are important concepts that
apply to all languages.

The syntax of a language is a set of characters and the acceptable arrangements (sequences)
of those characters. English, for example, includes the letters of the alphabet, punctuation, and
properly spelled words and properly punctuated sentences. The following is a syntactically
correct sentence in English: “Hello there, how are you?”

The following, however, is not syntactically correct: “Hello there, hao are you?”

In this sentence, the sequence of letters “hao” is not a word in the English language. Now
consider the following sentence,

“Colorless green ideas sleep furiously.”

This sentence is syntactically correct, but is semantically incorrect, and thus has no meaning.

The semantics of a language is the meaning associated with each syntactically correct
sequence of characters. In Mandarin, “Hao” is syntactically correct meaning “good.” (“Hao” is
from a system called pinyin, which uses the Roman alphabet rather than Chinese characters for
writing Mandarin.) Thus, every language has its own syntax and semantics, as shown below.

1. Write your own syntactically correct sentence, that has no meaning.

Part II: Program Translation
A central processing unit (CPU) is designed to interpret and execute a specific set of
instructions represented in binary form (i.e., 1s and 0s) called machine code. Only programs in
machine code can be executed by a CPU, as shown below.

Writing programs at this “low level” is tedious and error-prone. Therefore, most programs are
written in a “high-level” programming language such as Python. Since the instructions of such
programs are not in machine code that a CPU can execute, a translator program must be used.
There are two fundamental types of translators. One, called a compiler, translates programs
directly into machine code to be executed by the CPU, as shown below.

The other type of translator is called an interpreter, which executes program instructions in
place of (“running on top of”) the CPU, as shown below.

Thus, an interpreter can immediately execute instructions as they are entered. This is referred
to as interactive mode. This is a very useful feature for program development. Python, as we
shall see, is executed by an interpreter. On the other hand, compiled programs generally
execute faster than interpreted programs. Any program can be executed by either a compiler or
an interpreter, as long there exists the corresponding translator program for the programming
language that it is written in.

Part III: Program Debugging: Syntax Errors vs. Semantic Errors

Program debugging is the process of finding and correcting errors (“bugs”) in a computer
program. Programming errors are inevitable during program development. Syntax errors are
caused by invalid syntax (for example, entering prnt instead of print). Since a translator cannot
understand instructions containing syntax errors, translators terminate when encountering such
errors indicating where in the program the problem occurred.

In contrast, semantic errors (generally called logic errors) are errors in program logic. Such
errors cannot be automatically detected, since translators cannot understand the intent of a
given computation. For example, if a program computed the average of three numbers as
follows,

(num1 + 1 num2 + 1 num3) / 2.0

a translator would have no means of determining that the divisor should be 3 and not 2.
Computers do not understand what a program is meant to do, they only follow the instructions
given. It is up to the programmer to detect such errors. Program debugging is not a trivial task,
and constitutes much of the time of program development.

Programming languages fall into a number of programming paradigms. The two major
programming paradigms in use today are procedural (imperative) programming and object-
oriented programming. Each provides a different way of thinking about computation. While most
programming languages only support one paradigm, Python supports both procedural and
object-oriented programming. We will start with the procedural aspects of Python.

Concepts and Procedures
1. Two general types of software are system software and _______________ software.

2. The syntax of a given language is,

a. the set of symbols in the language.
b. the acceptable arrangement of symbols.
c. both of the above

3. The semantics of a given language is the meaning associated with any arrangement of

symbols in the language. (TRUE/FALSE)

4. CPUs can only execute instructions that are in binary form called _____________.
5. The two fundamental types of translation programs for the execution of computer

programs are _________________ and ___________________.

6. The process of finding and correcting errors in a computer program is called
__________.

7. Which kinds of errors can a translator program detect?
a. Syntax errors
b. Semantic errors
c. Neither of the above

8. Two major programming paradigms in use today are ______________ programming
and _____________________ programming.

Problem Solving

1. Give two specific examples of an application program besides those mentioned in this
activity.

2. For each of the following statements in English, indicate whether the statement contains
a syntax error, a logic (semantic) error, or is a valid statement.

a. Witch way did he go?
b. I think he went over their.
c. I didn’t see him go nowhere.

3. For each of the following arithmetic expressions for adding up the integers 1 to 5,

indicate whether the expression contains a syntax error, a semantic error, or is a valid
expression.

a. 1 + 2 ++ 3 + 4 + 5
b. 1 + 2 + 4 + 5
c. 1 +2 + 3 + 4 + 5
d. 5 + 4 + 3 + 2 + 1

4. Give one benefit of the use of a compiler, and one benefit of the use of an interpreter.

	Computer Software
	Part I: Syntax, Semantics, and Program Translation
	Part II: Program Translation
	Part III: Program Debugging: Syntax Errors vs. Semantic Errors
	Concepts and Procedures

