6.7 Off on a Tangent

Practice Tasks
I. Concepts and Procedures

1. Construct the tangent lines from point P to the circle given below.

2. Given points A, B, and C so that $A B=A C$, construct a circle so that $\overline{A B}$ is tangent to the circle at B and $\overline{A C}$ is tangent to the circle at C.

II. Reasoning

1. Prove Thales' theorem: If A, B, and P are points on a circle where $\overline{A B}$ is a diameter of the circle, then $\angle A P B$ is a right angle.
2. Prove the converse of Thales' theorem: If $\overline{A B}$ is a diameter of a circle and P is a point so that $\angle A P B$ is a right angle, then P lies on the circle for which $\overline{A B}$ is a diameter.
3. Prove that if segments from a point P are tangent to a circle at points A and B, then $\overline{P A}=\overline{P B}$.

