
6.5 Overtones 
 

Digging Deeper into the  
Math of Music 
 
_________________________________________ 
 
 

So far,  you have spent a lot  of time analyzing music through 
trigonometry.  You should be comfortable,  by now, representing sounds 
by analyzing their frequencies.  One problem, however,  is  that sounds in 
real  li fe  are often not so simple.   
 
 

 
Let’s start with an easier problem. When you 
strike a tuning fork,  you produce a pure tone. Pure 
tones are the most basic building blocks of sound, 
and can be represented as a single trigonometric 
function.  
 
 
 

 
 
1.  Suppose we strike a tuning fork that vibrates with a frequency of 

264Hz and amplitude of 0.002 inches.  This will  produce a pure C note.  
Find the sine equation that models this note.  
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II. Harmonic Tones 
 
When you listen to music,  you do not typically hear a lot  of tuning forks.  
In order to create more complex sounds,  you need to combine a number 
of pure tones.  You have probably noticed that different musical  
instruments sound different even if they are playing the same note.  This 
is because they have different combinations of pure tones.   
 
A harmonic tone is the sum of pure tones,  in which the frequency of each 
pure tone is  a multiple of the tone with the lowest frequency (called the 
fundamental tone).  Any frequency above the fundamental tone is  called 
an overtone. Any frequency above the fundamental  tone that is an integer 
multiple of the fundamental tone is called a harmonic.  For instance,  if  we 
play the A note on the piano above middle C,  also called A440,  440Hz is  
the frequency of the first  (fundamental)  tone, but there is also a second 
harmonic (880Hz),  a third harmonic (1320Hz),  and so on. Each of these 
harmonics has varying amplitudes.  Mathematically,  we can represent 
harmonic tones through the addition of many trigonometric functions.   
 
 
3.  Suppose a guitar string is plucked that that vibrates with a 

fundamental frequency of 200Hz. List frequencies of the next two 
harmonics.   
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The graphs below represent the fundamental frequency of the guitar 
string plus its first two overtones.  Notice how the amplitude changes in 
the overtones compared to the fundamental tone.  
 
 

4.  Using your graphing 
calculator,  graph 𝑦𝑦 =
0.12 sin(400𝜋𝜋𝜋𝜋) +
0.04 sin(800𝜋𝜋𝜋𝜋) +
0.02 sin(1200𝜋𝜋𝜋𝜋).  You may 
need to adjust  your graphing 
window. This is a close 
approximation to the guitar 
note we are investigating.  
Sketch a picture of the graph 
below.  

 
 
 
 
 
 
 
 
 
 

5.  Based on your graph in question 4,  what is the period of y? How does 
it  compare with the period of each individual tone? What do you 
suspect determines the period for the harmonic tones? 
 
 

6.  The distinctive sound of a trumpet is  due in part to the high 
amplitudes of its overtones.  The following three functions are the 
first three harmonics for a trumpet playing middle C.  
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𝑦𝑦1 = 0.30 sin(528𝜋𝜋𝜋𝜋),           𝑦𝑦2 = 0.28 sin(1056𝜋𝜋𝜋𝜋) ,            𝑦𝑦3 = 0.22 sin(2112𝜋𝜋𝜋𝜋)  

7.  Use a calculator to graph separately the first  three harmonics of the 
functions above, for 0 ≤ 𝜋𝜋 ≤ 0.008. Then graph the sum of the three 
harmonics.  Sketch the graphs below. What do you notice about the 
period of the sum? 

 

 

 

 

 

 

 

 

 

 
III. Some Interesting Harmonics Facts 

Doubling the frequency (Hz) of a pitch will raise the pitch one octave.  For 
instance,  the A note we discussed earlier has a frequency of 440Hz. If we 
wanted to find the frequency of the next time an A occurs,  we would perform 
the calculation 440 ×  2 = 880Hz. After that,  an A occurs at  880 ×  2 = 1760Hz.  

8.  The note D2 has the frequency 73.42Hz. Find the frequency of the D 
note that is one octave above and below D2.  
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Humans can typically hear frequencies from 20Hz up to about 20,000Hz. 
Lower frequencies can potentially produce more overtones within our 
ranges of hearing.  This makes sense because if  a note has a fundamental 
tone of 50Hz, many of its overtones would be within our range of hearing.  A 
very high note on a piano, however,  may have a fundamental frequency of 
about 4000Hz.  Only a couple octaves of overtones of this note would be 
audible to humans.  

 

9.  Let’s say you play the F3 note on a piano, which has a frequency of 
174.61Hz. How many octaves of overtones would be audible to 
humans?  
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Why does Autotune sound so funny? As you now know, when one sings,  
there is  a fundamental tone, as well as many overtones.  The program 
Autotune isolates the fundamental  tone, leaving out all  of  the overtones.  
This produces the synthetic,  robotic quality that we associate with 
Autotune. Let’s look at some graphs to help us understand this.  
 

10.  Graph the function 𝑦𝑦 = sin(880𝜋𝜋𝜋𝜋) below. This is  the graph of singer 
singing the note A440 through Autotune.  

 

 

 

 

11.  Next,  graph the function 𝑦𝑦 = sin(880𝜋𝜋𝜋𝜋) + sin�1760𝜋𝜋𝜋𝜋�
2 + sin�2640𝜋𝜋𝜋𝜋�

3 +
sin�3520𝜋𝜋𝜋𝜋�

4  
This is  an approximation of the actual sound a singer would produce 
singing the note A440.  To make things simpler,  all  of the amplitudes 
have been set  to 1.  Graph this function below.  
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12.  Compare the two graphs.  What is  similar about them? What is different 
about them? 

 

 

 

IV. Damped Harmonic Motion 

When looking at  the graphs of the trigonometric functions you graphed 
above, you may have noticed that,  because of their periodic nature,  these 
graphs will go on to infinity in the positive and negative direction on the x 
axis.  However,  if  you have ever plucked a guitar string,  you know that the 
sound does not continue forever.  It  gets quieter and quieter,  and eventually 
becomes silent.  This is due to the presence of friction. The type of motion, in 
which the amplitude decreases over time, is  called damped harmonic motion, 
and it can be represented mathematically as follows: 

 

 

 

 

 

 

13.    A tuning fork is struck and oscil lates in damped harmonic motion. The 
amplitude of the motion is measured,  and 3 seconds later it  is found that the 
amplitude has dropped to 1

4
 of this value.  Find the damping constant c for 

this tuning fork.  

 

 

 

 

 

Damped Harmonic Motion 

The equations    𝑦𝑦 = 𝑘𝑘𝑒𝑒−𝑐𝑐𝑐𝑐 sin 𝜔𝜔𝜋𝜋     or      𝑦𝑦 = 𝑘𝑘𝑒𝑒−𝑐𝑐𝑐𝑐 cos 𝜔𝜔𝜋𝜋    (𝑐𝑐 > 0) 

model damped harmonic motion, with the constant c being the 
damping constant,  k being the initial  amplitude, and 2π/𝜔𝜔 the 
period.  
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14.     A guitar string is pulled at  point P a distance of 3 cm above its  resting 
position. It  is then released and vibrates in damped harmonic motion with a 
frequency of 165 cycles per second. After 2 seconds,  it  is observed that the 
amplitude of the vibration at  point P is 0.6 cm. 

 a.  Find the damping constant c.  

 

 

 

 

 

 

 

b.  Find an equation that describes the position of point P,  above its  
rest  position as a function of time. Take t = 0 to be the instant the 
string is released.  

 

 

 


