5.9 The Binomial Theorem

Practice Tasks

I. Concepts and Procedures

1. Evaluate the following expressions.
a. $\frac{9!}{8!}$
b. $\frac{7!}{5!}$
c. $\frac{21!}{19!}$
d. $\frac{8!}{4!}$
2. Use the binomial theorem to expand the following binomial expressions.
a. $(x+y)^{4}$
b. $\quad(x+2 y)^{4}$
c. $(x+2 x y)^{4}$
d. $(x-y)^{4}$
e. $(x-2 x y)^{4}$
3. Use the binomial theorem to expand the following binomial expressions.
a. $(1+\sqrt{2})^{5}$
b. $(1+i)^{9}$
c. $(1-\pi)^{5}$ (Hint: $1-\pi=1+(-\pi)$.)
d. $(\sqrt{2}+i)^{6}$
e. $(2-i)^{6}$
4. Consider the expansion of $(a+b)^{12}$. Determine the coefficients for the terms with the powers of a and b shown.
a. $\quad a^{2} b^{10}$
b. $\quad a^{5} b^{7}$
c. $\quad a^{8} b^{4}$
5. Consider the expansion of $(x+2 y)^{10}$. Determine the coefficients for the terms with the powers of x and y shown.
a. $x^{2} y^{8}$
b. $\quad x^{4} y^{6}$
c. $x^{5} y^{5}$
6. Consider the expansion of $(5 p+2 q)^{6}$. Determine the coefficients for the terms with the powers of p and q shown.
a. $p^{2} q^{4}$
b. $\quad p^{5} q$
c. $p^{3} q^{3}$
7. Consider the binomial $(2 u-3 v)^{6}$.
a. Find the term that contains v^{4}.
b. Find the term that contains u^{3}.
c. Find the third term.
8. Consider the binomial $\left(u^{2}-v^{3}\right)^{6}$.
a. Find the term that contains v^{6}.
b. Find the term that contains u^{6}.
c. Find the fifth term.
9. Find the sum of all coefficients in the following binomial expansion.
a. $(2 u+v)^{10}$
b. $(2 u-v)^{10}$
c. $(2 u-3 v)^{11}$
d. $(u-3 v)^{11}$
e. $(1+i)^{10}$
f. $(1-i)^{10}$
g. $(1+i)^{200}$
h. $(1+v)^{201}$
10. Expand the binomial $(1+\sqrt{2} i)^{6}$.
11. Show that $(2+\sqrt{2} i)^{20}+(2-\sqrt{2} i)^{20}$ is an integer.

II. Reasoning

1. Explain why the coefficient of the term that contains u^{n} is 1 in the expansion of $(u+v)^{n}$.
2. Explain why the coefficient of the term that contains $u^{n-1} v$ is n in the expansion of $(u+v)^{n}$.
3. Explain why the rows of Pascal's triangle are symmetric. That is, explain why $C(n, k)=C(n,(n-k))$.
4. We know $(u+v)^{2}=u^{2}+2 u v+v^{2}=u^{2}+v^{2}+2 u v$. Use this pattern to predict what the expanded form of each expression would be. Then, expand the expression, and compare your results.
a. $\quad(u+v+w)^{2}$
b. $\quad(a+b+c+d)^{2}$
5. Look at the powers of 101 up to the fourth power on a calculator. Explain what you see. Predict the value of 101^{5}, and then find the answer on a calculator. Are they the same?
6. Can Pascal's triangle be applied to $\left(\frac{1}{u}+\frac{1}{v}\right)^{n}$ given $u, v \neq 0$?
