## 5.9 The Binomial Theorem

## Practice Tasks



## I. Concepts and Procedures

- 1. Evaluate the following expressions.
  - a.  $\frac{9!}{8!}$ b.  $\frac{7!}{5!}$ c.  $\frac{21!}{19!}$ d.  $\frac{8!}{4!}$
- 2. Use the binomial theorem to expand the following binomial expressions.
  - a.  $(x + y)^4$
  - b.  $(x+2y)^4$
  - c.  $(x + 2xy)^4$
  - d.  $(x y)^4$
  - e.  $(x 2xy)^4$
- 3. Use the binomial theorem to expand the following binomial expressions.
  - a.  $(1 + \sqrt{2})^5$ b.  $(1 + i)^9$ c.  $(1 - \pi)^5$  (Hint:  $1 - \pi = 1 + (-\pi)$ .) d.  $(\sqrt{2} + i)^6$ e.  $(2 - i)^6$

- 4. Consider the expansion of  $(a + b)^{12}$ . Determine the coefficients for the terms with the powers of *a* and *b* shown.
  - a.  $a^2b^{10}$
  - b.  $a^5b^7$
  - c.  $a^8b^4$
- 5. Consider the expansion of  $(x + 2y)^{10}$ . Determine the coefficients for the terms with the powers of x and y shown.
  - a.  $x^2 y^8$ b.  $x^4 y^6$
  - c.  $x^5y^5$
- 6. Consider the expansion of  $(5p + 2q)^6$ . Determine the coefficients for the terms with the powers of *p* and *q* shown.
  - a.  $p^2q^4$
  - b.  $p^5q$
  - c.  $p^{3}q^{3}$
- 7. Consider the binomial  $(2u 3v)^6$ .
  - a. Find the term that contains  $v^4$ .
  - b. Find the term that contains  $u^3$ .
  - c. Find the third term.
  - 8. Consider the binomial  $(u^2 v^3)^6$ .
    - a. Find the term that contains  $v^6$ .
    - b. Find the term that contains  $u^6$ .
    - c. Find the fifth term.

- 9. Find the sum of all coefficients in the following binomial expansion.
  - a.  $(2u + v)^{10}$
  - b.  $(2u v)^{10}$
  - c.  $(2u 3v)^{11}$
  - d.  $(u 3v)^{11}$
  - e.  $(1+i)^{10}$
  - f.  $(1-i)^{10}$
  - g.  $(1+i)^{200}$
  - h.  $(1+v)^{201}$
- 10. Expand the binomial  $(1 + \sqrt{2}i)^6$ .
- 11. Show that  $(2 + \sqrt{2}i)^{20} + (2 \sqrt{2}i)^{20}$  is an integer.

## II. Reasoning

- 1. Explain why the coefficient of the term that contains  $u^n$  is 1 in the expansion of  $(u + v)^n$ .
- 2. Explain why the coefficient of the term that contains  $u^{n-1}v$  is *n* in the expansion of  $(u + v)^n$ .
- 3. Explain why the rows of Pascal's triangle are symmetric. That is, explain why C(n,k) = C(n,(n-k)).
- 4. We know  $(u + v)^2 = u^2 + 2uv + v^2 = u^2 + v^2 + 2uv$ . Use this pattern to predict what the expanded form of each expression would be. Then, expand the expression, and compare your results.
  - a.  $(u + v + w)^2$
  - b.  $(a + b + c + d)^2$
- 5. Look at the powers of 101 up to the fourth power on a calculator. Explain what you see. Predict the value of 101<sup>5</sup>, and then find the answer on a calculator. Are they the same?
- 6. Can Pascal's triangle be applied to  $\left(\frac{1}{u} + \frac{1}{v}\right)^n$  given  $u, v \neq 0$ ?