5.6 Even More Complex Multiplication

 Practice Tasks
I. Concepts and Procedures

1. Find the modulus and argument for each of the following complex numbers.
a. $\quad z_{1}=\frac{\sqrt{3}}{2}+\frac{1}{2} i$
b. $\quad z_{2}=2+2 \sqrt{3} i$
c. $z_{3}=-3+5 i$
d. $z_{4}=-2-2 i$
e. $z_{5}=4-4 i$
f. $\quad z_{6}=3-6 i$
2. For parts (a)-(c), determine the geometric effect of the specified transformation.
a. $L(z)=-3 z$
b. $\quad L(z)=-100 z$
c. $\quad L(z)=-\frac{1}{3} z$
d. Describe the geometric effect of the transformation $L(z)=a z$ for any negative real number a.
3. For parts (a)-(c), determine the geometric effect of the specified transformation.
a. $\quad L(z)=(-3 i) z$
b. $\quad L(z)=(-100 i) z$
c. $\quad L(z)=\left(-\frac{1}{3} i\right) z$
d. Describe the geometric effect of the transformation $L(z)=(b i) z$ for any negative real number b.
4. A function L is a linear transformation if all z and w in the domain of L and all constants a meet the following two conditions:
i. $\quad L(z+w)=L(z)+L(w)$
ii. $\quad L(a z)=a L(z)$

Show that the following functions meet the definition of a linear transformation.
a. $\quad L_{1}(z)=4 z$
b. $\quad L_{2}(z)=i z$
c. $\quad L_{3}(z)=(4+i) z$
5. Suppose that we have two linear transformations $L_{1}(z)=3 z$ and $L_{2}(z)=(5 i) z$.
a. What is the geometric effect of first performing transformation L_{1}, and then performing transformation L_{2} ?
b. What is the geometric effect of first performing transformation L_{2}, and then performing transformation L_{1} ?
c. Are your answers to parts (a) and (b) the same or different? Explain how you know.
6. Suppose that we have two linear transformations $L_{1}(z)=(4+3 i) z$ and $L_{2}(z)=-z$.

What is the geometric effect of first performing transformation L_{1}, and then performing transformation L_{2} ?
7. Suppose that we have two linear transformations $L_{1}(z)=(3-4 i) z$ and $L_{2}(z)=-z$. What is the geometric effect of first performing transformation L_{1}, and then performing transformation L_{2} ?
8. Explain the geometric effect of the linear transformation $L(z)=(a-b i) z$, where a and b are positive real numbers.

9. In Geometry, we learned the special angles of a right triangle whose hypotenuse is 1 unit. The figures are shown above. Describe the geometric effect of the following transformations.
a. $\quad L_{1}(z)=\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right) z$
b. $\quad L_{2}(z)=(2+2 \sqrt{3} i) z$
c. $\quad L_{3}(z)=\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right) z$
d. $\quad L_{4}(z)=(4+4 i) z$
10. The vertices $A(0,0), B(1,0), C(1,1), D(0,1)$ of a unit square can be represented by the complex numbers $A=0, B=1, C=1+i, D=i$. We learned that multiplication of those complex numbers by i rotates the unit square by 90° counterclockwise. What do you need to multiply by so that the unit square will be rotated by 90° clockwise?
11. Find a linear transformation L that will have the geometric effect of rotation by the specified amount without dilating.
a. 45° counterclockwise
b. 60° counterclockwise
c. 180° counterclockwise
d. 120° counterclockwise
e. 30° clockwise
f. 90° clockwise
g. 180° clockwise
h. 135° clockwise
12. Suppose that we have linear transformations L_{1} and L_{2} as specified below. Find a formula for $L_{2}\left(L_{1}(z)\right)$ for complex numbers z.
a. $\quad L_{1}(z)=(1+i) z$ and $L_{2}(z)=(1-i) z$
b. $\quad L_{1}(z)=(3-2 i) z$ and $L_{2}(z)=(2+3 i) z$
c. $\quad L_{1}(z)=(-4+3 i) z$ and $L_{2}(z)=(-3-i) z$
d. $\quad L_{1}(z)=(a+b i) z$ and $L_{2}(z)=(c+d i) z$ for real numbers a, b, c and d.

II. Problem Solving, Reasoning and Modeling

1. In the lesson, you justified your observation that the geometric effect of a transformation $L(z)=w z$ is a rotation by $\arg (w)$ and a dilation by $|w|$ for a complex number w that is represented by a point in the first quadrant of the coordinate plane. In this exercise, you will verify that this observation is valid for any complex number w. For a complex number $w=a+b i$, we only considered the case where $a>0$ and $b>0$. There are eight additional possibilities we need to consider.
a. Case 1: The point representing w is the origin. That is, $a=0$ and $b=0$.

In this case, explain why $L(z)=(a+b i) z$ has the geometric effect of rotation by $\arg (a+b i)$ and dilation by $|a+b i|$.
b. Case 2: The point representing w lies on the positive real axis. That is, $a>0$ and $b=0$.
In this case, explain why $L(z)=(a+b i) z$ has the geometric effect of rotation by $\arg (a+b i)$ and dilation by $|a+b i|$.
c. Case 3: The point representing w lies on the negative real axis. That is, $a<0$ and $b=0$.
In this case, explain why $L(z)=(a+b i) z$ has the geometric effect of rotation by $\arg (a+b i)$ and dilation by $|a+b i|$.
d. Case 4: The point representing w lies on the positive imaginary axis. That is, $a=0$ and $b>0$.
In this case, explain why $L(z)=(a+b i) z$ has the geometric effect of rotation by $\arg (a+b i)$ and dilation by $|a+b i|$.
e. Case 5: The point representing w lies on the negative imaginary axis. That is, $a=0$ and $b<0$.
In this case, explain why $L(z)=(a+b i) z$ has the geometric effect of rotation by $\arg (a+b i)$ and dilation by $|a+b i|$.
f. \quad Case 6: The point representing $w=a+b i$ lies in the second quadrant. That is, $a<0$ and $b>0$. Points representing , $z, a z,(b i) z$, and $w z=a z+(b i) z$ are shown in the figure below.

For convenience, rename the origin O and let $P=w, Q=a, R=w z, S=a z$, and $T=z$, as shown below. Let $m(\angle P O Q)=\theta$.

i. Argue that $\triangle O P Q \sim \triangle O R S$.
ii. Express the argument of $a z$ in terms of $\arg (z)$.
iii. Express $\arg (w)$ in terms of θ, where $\theta=m(\angle P O Q)$.
iv. Explain why $\arg (w z)=\arg (a z)-\theta$.
v. Combine your responses from parts (ii), (iii) and (iv) to express $\arg (w z)$ in terms of $\arg (z)$ and $\arg (w)$.
g. Case 7: The point representing $w=a+b i$ lies in the third quadrant. That is $a<0$ and $b<0$.

Points representing $, z, a z,(b i) z$, and $w z=a z+(b i) z$ are shown in the figure below.

For convenience, rename the origin O and let $P=w, Q=a, R=w z, S=a z$, and $T=z$, as shown below. Let $m(\angle P O Q)=\theta$.

i. Argue that $\triangle O P Q \sim \triangle O R S$.
ii. Express the argument of $a z$ in terms of $\arg (z)$.
iii. Express $\arg (w)$ in terms of θ, where $\theta=m(\angle P O Q)$.
iv. Explain why $\arg (w z)=\arg (a z)+\theta$.
v. Combine your responses from parts (ii), (iii), and (iv) to express $\arg (w z)$ in terms of $\arg (z)$ and $\arg (w)$.
h. Case 8: The point representing $w=a+b i$ lies in the fourth quadrant. That is, $a>$ 0 and $b<0$.

Points representing $, z, a z,(b i) z$, and $w z=a z+(b i) z$ are shown in the figure below.

For convenience, rename the origin O, and let $P=w, Q=a, R=w z, S=a z$, and $T=z$, as shown below. Let $m(\angle P O Q)=\theta$.

i. Argue that $\triangle O P Q \sim \triangle O R S$.
ii. Express $\arg (w)$ in terms of θ, where $\theta=m(\angle P O Q)$.
iii. Explain why $m(\angle Q O R)=\theta-\arg (z)$.
iv. Express $\arg (w z)$ in terms of $m(\angle Q O R)$
v. Combine your responses from parts (ii), (iii), and (iv) to express $\arg (w z)$ in terms of $\arg (z)$ and $\arg (w)$.
2. Summarize the results of Problem 1, parts (a)-(h) and the lesson.

