5.6: Even More Complex Multiplication

Discovering the Geometric Effects

The design on the right – without the colored shading – is often found in architectural decoration. It is known as the *ad quadratum*, where one square is set diagonally inside another square.

- 1. How many squares do you see?
- 2. If the length of a side of the largest square is 2, find the length of the side of each smaller square.

Write your answer as a series:

II. Unit Square Transformations

The vertices A(0,0), B(1,0), C(1,1), and D(0,1) of a unit square can be represented by the complex numbers A = 0, B = 1, C = 1 + i, and D = i.

- 4. Let $L_2(z) = 2z$.
 - a. Calculate $A' = L_2(A)$, $B' = L_2(B)$, $C' = L_2(C)$, and $D' = L_2(D)$. Plot these four points on the axes.
 - b. Describe the geometric effect of the transformation $L_2(z) = 2z$ on the square *ABCD*.

- 5. Let $L_3(z) = iz$.
 - a. Calculate $A' = L_3(A)$, $B' = L_3(B)$, $C' = L_3(C)$, and $D' = L_3(D)$. Plot these four points on the axes.
 - b. Describe the geometric effect of the transformation $L_3(z) = iz$ on the square *ABCD*.

- 6. Let $L_4(z) = (2i)z$.
 - a. Calculate $A' = L_4(A)$, $B' = L_4(B)$, $C' = L_4(C)$, and $D' = L_4(D)$. Plot these four points on the axes.
 - b. Describe the geometric effect of the transformation $L_4(z) = (2i)z$ on the square *ABCD*.
- 7. Explain how transformations L_2 , L_3 , and L_4 are related.

- 8. We will continue to use the unit square *ABCD* with A = 0, B = 1, C = 1 + I, D = i for this exercise.
 - a. What is the geometric effect of the transformation L(z) = 5z on the unit square?
 - b. What is the geometric effect of the transformation L(z) = (5i)z on the unit square?
 - c. What is the geometric effect of the transformation $L(z) = (5i^3)z$ on the unit square?
 - d. What is the geometric effect of the transformation $L(z) = (5i^4)z$ on the unit square?
 - e. What is the geometric effect of the transformation $L(z) = (5i^5)z$ on the unit square?
 - f. What is the geometric effect of the transformation $L(z) = (5i^n)z$ on the unit square, for some integer $n \ge 0$?

III. Exploratory Challenge

Your group is assigned either to the 1-team, 2-team, 3-team, or 4-team. Each team will answer the questions below for the transformation that corresponds to their team number:

 $L_1(z) = (3 + 4i)z$ $L_2(z) = (-3 + 4i)z$ $L_3(z) = (-3 - 4i)z$ $L_4(z) = (3 - 4i)z.$

9. The unit square unit square *ABCD* with A = 0, B = 1, C = 1 + i, D = i is shown below. Apply your transformation to the vertices of the square *ABCD* and plot the transformed points A', B', C', and D' on the same coordinate axes.

For the 1-team:	For the 2-team:
a. Why is $B' = 3 + 4i$?	a. Why is $B' = -3 + 4i$?
b. What is the argument of $3 + 4i$?	b What is the argument of $-3 + 4i^2$
	b. What is the argument of 5 + 1t.
c. What is the modulus of $3 + 4i$?	c. What is the modulus of $-3 + 4i$?
For the 3-team:	For the 4-team:
a. Why is $B = -3 - 4t$?	a. Why is $B = 3 - 4t$?
b. What is the argument of $-3 - 4i$?	b. What is the argument of $3 - 4i$?
c. What is the modulus of $-3 - 4i$?	c. What is the modulus of $3 - 4i$?

- 10. All groups should also answer the following:
 - a. Describe the amount the square has been rotated counterclockwise.
 - b. What is the dilation factor of the square? Explain how you know.
 - c. What is the geometric effect of your transformation L_1 , L_2 , L_3 , or L_4 on the unit square *ABCD*?
 - d. Make a conjecture: What do you expect to be the geometric effect of the transformation L(z) = (2 + i)z on the unit square *ABCD*?
 - e. Test your conjecture with the unit square on the axes below.

IV. Applications

11. For each exercise below, compute the product *wz*. Then, plot the complex numbers *z*, *w*, and *wz* on the axes provided.

a.
$$z = 3 + i, w = 1 + 2i$$

b. z = 1 + 2i, w = -1 + 4i

c. z = -1 + i, w = -2 - i

- d. For each part (a), (b), and (c), draw line segments connecting each point *z*, *w* and *wz* to the origin. Determine a relationship between the arguments of the complex numbers *z*, *w*, and *wz*.
- 12. Let w = a + bi and z = c + di.
 - a. Calculate the product *wz*.
 - b. Calculate the moduli |w|, |z|, and |wz|.
 - c. What can you conclude about the quantities |w|, |z|, and |wz|?

- 13. What does the result of Questions 11-12 tell us about the geometric effect of the transformation L(z) = wz?
- 14. If *z* and *w* are the complex numbers with the specified arguments and moduli, locate the point that represents the product *wz* on the provided coordinate axes.

For complex numbers *z* and *w*,

• The modulus of the product is the product of the moduli:

 $|wz| = |w| \cdot |z|,$

• The argument of the product is the sum of the arguments:

 $\arg(wz) = \arg(w) + \arg(z).$