5.4 Distance on the Complex Plane

Practice Tasks

I. Concepts and Procedures

1. Find the midpoint between the two given points in the rectangular coordinate plane.
a. $2+4 i$ and $4+8 i$
b. $-3+7 i$ and $5-i$
c. $-4+3 i$ and $9-4 i$
d. $4+i$ and $-12-7 i$
e. $-8-3 i$ and $3-4 i$
f. $\frac{2}{3}-\frac{5}{2} i$ and $-0.2+0.4 i$
2. Find the distance between the following points.
a. Point $A(2,3)$ and point $B(6,6)$
b. $\quad A=2+3 i$ and $B=6+6 i$
c. $\quad A=-1+5 i$ and $B=5+11 i$
d. $\quad A=1-2 i$ and $B=-2+3 i$
e. $\quad A=\frac{1}{2}-\frac{1}{2} i$ and $B=-\frac{2}{3}+\frac{1}{3} i$

II. Problem Solving

1. Given three points A, B, C, where C is the midpoint of A and B.
a. If $A=-5+2 i$ and $C=3+4 i$, find B.
b. If $B=1+11 i$ and $C=-5+3 i$, find A.
2. Point C is the midpoint between $A=4+3 i$ and $B=-6-5 i$. Find the distance between points C and D for each point D provided below.
a. $2 D=-6+8 i$
b. $\quad D=-\bar{B}$
3. The distance between points $A=1+i$ and $B=a+b i$ is 5 . Find the point B for each value provided below.
a. $\quad a=4$
b. $\quad b=6$

III. Reasoning

1. Let $A=2+4 i, B=14+8 i$, and suppose that C is the midpoint of A and B, and that D is the midpoint of A and C.
a. Find points C and D.
b. Find the distance between A and B.
c. Find the distance between A and C.
d. Find the distance between C and D.
e. Find the distance between D and B.
f. Find a point one quarter of the way along the line segment connecting segment A and B, closer to A than to B.
g. Terrence thinks the distance from B to C is the same as the distance from A to B. Is he correct? Explain why or why not.
h. Using your answer from part (g), if E is the midpoint of C and B, can you find the distance from E to C ? Explain.
i. Without doing any more work, can you find point E ? Explain.

IV. Modeling

1. Draw five points in the plane A, B, C, D, E. Start at any position, P_{0}, and leapfrog over A to a new position, P_{1} (so, A is the midpoint of $\overline{P_{0} P_{1}}$). Then leapfrog over B, then C, then D, then E, then A, then B, then C, then D, then E, then A again, and so on. How many jumps will it take to get back to the start position, P_{0} ?
2. For the leapfrog puzzle problems in both Exploratory Challenge 1 and Problem 5, we are given an odd number of points to leapfrog over. What if we leapfrog over an even number of points? Let $A=2, B=2+i$, and $P_{0}=i$. Will P_{n} ever return to the starting position, P_{0} ? Explain how you know.
