5.3 Complex Multiplication

Practice Tasks

I. Concepts and Procedures

1. The \qquad of a complex number is when you switch the sign of the complex part.
2. Find the complex conjugate of the following:
a. $\quad-5+3 i$
b. $4 i$
c. $\quad 1.23+2.73 i$
3. Given the complex numbers $w=2-3 i$ and $z=-3+2 i$, graph each of the following:
a. $\quad W-2$
b. $z+2$
c. $\quad w+2 i$
d. $z-3 i$
e. $w+z$
f. $z-W$
4. Let $z=-4+2 i$, simplify the following and describe the geometric effect of the operation. Plot the result in the complex plane.
a. $z+2-3 i$
b. $z-2-3 i$
c. $z-(2-3 i)$
d. $2 z$
e. $\frac{Z}{2}$
5. Let $z=-1+2 i, w=4-i$, simplify the following expressions.
a. $z+\bar{w}$
b. $\quad|w-\bar{z}|$
c. $2 z-3 w$
d. $\frac{z}{w}$
6. Let $z=1+2 i$, simplify the following and describe the geometric effect of the operation.
a. $i z$
b. $\quad i^{2} Z$
c. \bar{Z}
d. $-\bar{Z}$
e. $i \bar{z}$
f. $2 i z$
g. $\quad i z+5-3 i$
7. Simplify the following expressions.
a. $(4-2 i)(5-3 i)$
b. $(-2+3 i)(-2-3 i)$
c. $(1+i)^{2}$
d. $\quad(1+i)^{10} \quad\left[\right.$ Hint: $\left.b^{n m}=\left(b^{n}\right)^{m}\right]$
e. $\frac{-1+2 i}{1-2 i}$
f. $\quad \frac{x^{2}+4}{x-2 i}$, provided $x \neq 2 i$.
8. Given $z=2+i$, describe the geometric effect of the following. Plot the result.
a. $z(1+i)$
b. $\quad z\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)$

II. Reasoning

1. Given the complex number z , find a complex number $\mathrm{z}+\mathrm{w}$ where $\mathrm{z}+\mathrm{w}$ is shifted
a. $2 \sqrt{2}$ in a northeast direction
b. $5 \sqrt{2} \mathrm{n}$ a southeast direction
2. We learned that multiplying by i produces a 90° counterclockwise rotation about the origin. What do we need to multiply by to produce a 90° clockwise rotation about the origin?
III. Modeling
3. Let $w=$ the complex number of your own choosing. Then find z for each case.
a. $\quad z$ is a 270° counterclockwise rotation about the origin of w.
b. $\quad z$ is reflected over the imaginary axis from w.
c. $\quad z$ is reflected over the real axis from w.
