

2.10: Fractals

Unit Performance Assessment

A **fractal** is made up of a pattern that is **iterated** (repeated) indefinitely on successively smaller scales, as shown above.

<u>Part 1</u> – In this problem, you will generate a fractal through iterations of $f(z) = z^2$. Consider $z_0 = 0.8 + 0.5i$.

- 1. Calculate z_1 , z_2 , z_3 , z_4 , z_5 , z_6 , z_7 as follows:
 - a. $z_1 = f(z_0)$, that is plug z_0 into f(z) [Just square it!]
 - b. $z_2 = f(z_1)$ [take your previous answer and square it, and so on...]
 - c. $z_3 = f(z_2)$
 - d. $z_4 = f(z_3)$
 - e. $z_5 = f(z_4)$
 - f. $z_6 = f(z_5)$
 - g. $z_7 = f(z_6)$
- 2. Graph each of the numbers on the complex plane.
- 3. Predict the location of z_{100} .

<u>Part 2</u> – Create your own fractal. Use a different complex number as z_0 and a different function to iterate.