

2.10: Fractals

Unit Performance Assessment

A fractal is made up of a pattern that is iterated (repeated) indefinitely on successively smaller scales, as shown above.

Part 1 - In this problem, you will generate a fractal through iterations of $f(z)=z^{2}$. Consider $z_{0}=0.8+0.5 i$.

1. Calculate $z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, z_{6}, z_{7}$ as follows:
a. $z_{1}=f\left(z_{0}\right)$, that is plug z_{0} into $f(z)$ [Just square it!]
b. $z_{2}=f\left(z_{1}\right)$ [take your previous answer and square it, and so on...]
c. $z_{3}=f\left(z_{2}\right)$
d. $z_{4}=f\left(z_{3}\right)$
e. $z_{5}=f\left(z_{4}\right)$
f. $\quad z_{6}=f\left(z_{5}\right)$
g. $z_{7}=f\left(z_{6}\right)$
2. Graph each of the numbers on the complex plane.
3. Predict the location of z_{100}.

Part 2 - Create your own fractal. Use a different complex number as z_{0} and a different function to iterate.

