## 4.9: Matrices as <br> Transformations of the Coordinate Plane

Geometric Transformations


Graphic design and 3-D Modeling software programs use matrix mathematics to process transformations and render images. A square matrix, one with exactly as many rows as columns, can represent a linear transformation of a geometric object. For example, in the Cartesian X-Y plane, the matrix $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ reflects an object over the vertical $Y$ axis. In a video game, this would render the upside-down mirror image of a castle reflected in a lake.

We can write the vertices of a figure as a matrix. For example the matrix


1. Write a coordinate matrix for the vertices of polygon $F H M Q$.


## II. Translating a 2-Dimensional Figure

Now that we can represent a two-dimensional object in a matrix, we can transform them in the coordinate plane. First we will translate these matrices. A translation is a vertical or horizontal shift of the vector within the plane. We can accomplish this through matrix addition/subtraction.

To translate a matrix, we will create a translation matrix and add this to the coordinate matrix to create a new matrix that contains the translated coordinates.

$$
\left[\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right]+\left[\begin{array}{cc}
\text { Horiz. Trans. } & \text { Horiz. Trans } \\
\text { Vert. Trans. } & \text { Vert. Trans. }
\end{array}\right]=\left[\begin{array}{ll}
x_{1}^{\prime} & x_{2}^{\prime} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right]=\left(x_{1}^{\prime}, y_{1}^{\prime}\right),\left(x_{2}^{\prime}, y_{2}^{\prime}\right)
$$

EXAMPLE 1 - Translating a 2-D Figure
Quadrilateral ABCD has vertices $\mathrm{A}(0,0), \mathrm{B}(-1,4), \mathrm{C}(-4,2)$ and $\mathrm{D}(-4,0)$. Use a matrix to find the coordinates that are translated 6 units right and 2 units down. Graph $A B C D$ and its image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

SOLUTION:

## Vertices of the Quadrilateral

## Translation Matrix

Add 6 to each $x$-coordinate.

$$
\left.\begin{array}{c}
A \\
{\left[\begin{array}{rrrr}
0 & -1 & -4 & D \\
0 & 4 & 2 & 0
\end{array}\right]} \\
\left.+\begin{array}{rrrr}
\downarrow & \downarrow & \downarrow & \downarrow \\
6 & 6 & 6 & 6 \\
-2 & -2 & -2 & -2
\end{array}\right] \\
\uparrow
\end{array} \uparrow \begin{array}{r}
{[ }
\end{array}\right\}
$$

Subtract 2 from each $y$-coordinate.

So, the vertices are $A^{\prime}(6,-2), B^{\prime}(5,2), C^{\prime}(2,0)$ and $D^{\prime}(2 .-2)$, and the graphs are below.


## Your Turn:

2. Use a matrix to find the coordinates of $\triangle P X Y$ that are translated 3 units right and 5 units up. Graph the translated image.

3. Write a translation matrix to translate the vertices of a pentagon 3 units left and 2 units up?
4. Use your answer to question 3 to translate a pentagon with vertices $\mathrm{A}(0,-5)$, $B(-1,-1), C(5,0), D(1,3)$ and $E(4,0)$. Graph the preimage and image.

## III. Reflecting a 2-D Figure

The next transformations of vectors in the coordinate plane we will learn are reflections. A reflection is a transformation that maps each point in an object to its mirror image, using a specific line of reflection.

To reflect using a matrix, we will take a reflection matrix and multiply it by the coordinate matrix to create a new matrix containing the coordinates of the reflected image. Please note that since matrix multiplication is not commutative, the order matters and the reflection matrix must come first.

$$
\text { [Reflection Matrix] }\left[\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right]=\left[\begin{array}{ll}
x_{1}^{\prime} & x_{2}^{\prime} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right]=\left(x_{1}^{\prime}, y_{1}^{\prime}\right),\left(x_{2}^{\prime}, y_{2}^{\prime}\right)
$$

The four most common reflection matrices are:

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

5. Identify which of the four reflection matrices listed above create the following transformations of $\triangle A B C$. Show your matrix multiplication.
a. across the x -axis
b. across the $y$-axis

6. Identify which of the four reflection matrices listed above create the following transformations of $\triangle A B C$. Show your matrix multiplication.
a. across the line $y=x$

b. across the line $y=-x$

7. Use a matrix to find the coordinates of quadrilateral $B R K Z$ that are reflected over the x -axis, the y -axis, and the lines $y= \pm x$. Graph the three translated images.
a. across the x -axis :
b. across the $y$-axis:
c. across the line $\mathrm{y}=\mathrm{x}$ :
d. across the line $y=-x$ :


## IV. Rotating a 2-D Figure

A rotation is a transformation that turns a figure around a fixed point called the center of rotation. To rotate using a matrix, we will take a rotation matrix and multiply it by our coordibnate matrix to create a new matrix that contains the translated coordinates.

$$
\text { [Rotation Matrix] }\left[\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right]=\left[\begin{array}{ll}
x_{1}^{\prime} & x_{2}^{\prime} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right]=\left(x_{1}^{\prime}, y_{1}^{\prime}\right),\left(x_{2}^{\prime}, y_{2}^{\prime}\right)
$$

As you recall from trigonometry, angles of rotation are measured counterclockwise about the origin.


The three most common rotation matrices are:

$$
\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \quad\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \quad\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

8. Identify which of the four reflection matrices listed above create the following transformations of $\triangle A B C$. Show your matrix multiplication.
a. $90^{\circ}$
b. $180^{\circ}$


c. $270^{\circ}$

9. Use a matrix to find the coordinates of quadrilateral $B R K Z$ after rotations of $90^{\circ}$, $180^{\circ}$, and $270^{\circ}$. Graph the three translated images.
a. $90^{\circ}$ :
b. $180^{\circ}$ :
c. $270^{\circ}$ :

10. Write the rotation matrix for a $360^{\circ}$ rotation.

## V. Dilating a 2-D Figure

The final transformations in the coordinate plane are dilations. A dilation is a transformation where the shape of an object remains the same, but its size is changed, either made larger or smaller. To dilate using a matrix, you will perform scalar multiplication.

$$
\text { [Scale Factor }]\left[\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right]=\left[\begin{array}{ll}
x_{1}^{\prime} & x_{2}^{\prime} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right]=\left(x_{1}^{\prime}, y_{1}^{\prime}\right),\left(x_{2}^{\prime}, y_{2}^{\prime}\right)
$$

11. Use a dilation matrix to find the coordinates of $\Delta F J T$ after it is dilated by the following scale factors. Then graph the three dilated images.
a. 3
b. $\frac{1}{2}$

