4.6 Cryptography \& Matrices

Practice Tasks
I. Concepts and Procedures

1. a. The matrix $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is called an \qquad matrix.
b. If A is a 2×2 matrix, then $A \times I=$ \qquad and $I \times A=$ \qquad .
c. If A and B are 2×2 matrices with $A B=I$, then B is the \qquad of A.
2. Calculate the products $A B$ and $B A$ to prove that B is the inverse of A.
a. $\quad A=\left[\begin{array}{ll}4 & 1 \\ 7 & 2\end{array}\right]$
$B=\left[\begin{array}{cc}2 & -1 \\ -7 & 4\end{array}\right]$
b. $\quad A=\left|\begin{array}{ccc}1 & 3 & -1 \\ 1 & 4 & 0 \\ -1 & -3 & 2\end{array}\right|$
$B=\left|\begin{array}{ccc}8 & -3 & 4 \\ -2 & 1 & -1 \\ 1 & 0 & 1\end{array}\right|$
3. Find the inverse and verify that $A^{-1} A=A A^{-1}=I_{2}$ and $B^{-1} B=B B^{-1}=I_{3}$
a. $\quad A=\left[\begin{array}{ll}7 & 4 \\ 3 & 2\end{array}\right]$
b. $\quad B=\left|\begin{array}{ccc}1 & 3 & 2 \\ 0 & 2 & 2 \\ -2 & -1 & 0\end{array}\right|$
4. Find the determinant, then find the inverse matrix if it exists:
a. $\left[\begin{array}{cc}-3 & -5 \\ 2 & 3\end{array}\right]$
b. $\quad\left[\begin{array}{cc}2 & 5 \\ -5 & -13\end{array}\right]$
c. $\left[\begin{array}{cc}6 & -3 \\ -8 & 4\end{array}\right]$
d. $\quad\left[\begin{array}{cc}0.4 & -1.2 \\ 0.3 & 0.6\end{array}\right]$
e. $\quad\left|\begin{array}{ccc}2 & 4 & 1 \\ -1 & 1 & 1 \\ 1 & 4 & 0\end{array}\right|$
f. $\quad\left|\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & -1 \\ 1 & -1 & -10\end{array}\right|$
g. $\quad\left|\begin{array}{ccc}0 & -2 & 2 \\ 3 & 1 & 3 \\ 1 & -2 & 3\end{array}\right|$
h. $\left|\begin{array}{llll}1 & 2 & 0 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 0 & 2\end{array}\right|$

II. Problem Solving

1. Decode the message below using the matrix $D=\left[\begin{array}{ccc}1 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & 2 & 1\end{array}\right]$: $22,17,24,9,-1,14,-9,34,44,64,47,77$.
2. You received a coded message in the matrix $C=\left[\begin{array}{ccc}30 & 30 & 69 \\ 2 & 1 & 15 \\ 9 & 14 & 20\end{array}\right]$. However, the matrix D that will decode this message has been corrupted, and you do not know the value of entry d_{12}. You know that all entries in matrix D are integers. Using x to represent this unknown entry, the decoding matrix D is given by $D=$ $\left[\begin{array}{ccc}2 & x & -4 \\ -1 & 2 & 3 \\ 1 & -1 & -2\end{array}\right]$. Decode the message in matrix C.

III. Reasoning

1. Claire claims that she multiplied $A=\left[\begin{array}{cc}-3 & 2 \\ 0 & 4\end{array}\right]$ by another matrix X and obtained $\left[\begin{array}{cc}-3 & 2 \\ 0 & 4\end{array}\right]$ as her result. What matrix did she multiply by? How do you know?
2. Brandon encoded his name with the matrix $E=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$, producing the matrix $C=$ $\left[\begin{array}{cccc}6 & 33 & 15 & 14 \\ 12 & 66 & 30 & 28\end{array}\right]$. Decode the message, or explain why the original message cannot be recovered.
3. Janelle used the encoding matrix $E=\left[\begin{array}{cc}1 & 2 \\ 1 & -1\end{array}\right]$ to encode the message "FROG" by multiplying $C=\left[\begin{array}{cc}6 & 18 \\ 15 & 7\end{array}\right] \cdot\left[\begin{array}{cc}1 & 2 \\ 1 & -1\end{array}\right]=\left[\begin{array}{cc}24 & 30 \\ 22 & 37\end{array}\right]$. When Taylor decoded it, she computed $M=\left[\begin{array}{cc}-1 & 2 \\ 1 & 1\end{array}\right] \cdot\left[\begin{array}{ll}24 & 30 \\ 22 & 37\end{array}\right]=\left[\begin{array}{cc}20 & 44 \\ 2 & -7\end{array}\right]$. What went wrong?
4. Show that the only matrix B such that $A+B=A$ is the zero matrix.

IV. Modeling

1. Create a secret code that uses groups of four blocks of characters and a 4×4 matrix encryption key.
