4.6 Cryptography & Matrices

Practice Tasks

I. Concepts and Procedures

1. a. The matrix $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is called an _____ matrix.

b. If *A* is a 2 x 2 matrix, then $A \times I = _$ and $I \times A = _$.

c. If *A* and *B* are 2 x 2 matrices with *AB* = *I*, then B is the _____ of A.

2. Calculate the products *AB* and *BA* to prove that *B* is the inverse of *A*.

a.	$A = \begin{bmatrix} 4 & 1 \\ 7 & 2 \end{bmatrix}$				$B = \begin{bmatrix} 2 & -1 \\ -7 & 4 \end{bmatrix}$		
b.	$A = \begin{vmatrix} 1 \\ 1 \\ -1 \end{vmatrix}$	3 4 -3	$-1 \\ 0 \\ 2$		$B = \begin{vmatrix} 8 \\ -2 \\ 1 \end{vmatrix}$	-3 1 0	$\begin{array}{c} 4\\ -1\\ 1 \end{array}$

- 3. Find the inverse and verify that $A^{-1}A = AA^{-1} = I_2$ and $B^{-1}B = BB^{-1} = I_3$ a. $A = \begin{bmatrix} 7 & 4 \\ 3 & 2 \end{bmatrix}$ b. $B = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 2 & 2 \\ -2 & -1 & 0 \end{bmatrix}$
- 4. Find the determinant, then find the inverse matrix if it exists:

a.
$$\begin{bmatrix} -3 & -5 \\ 2 & 3 \end{bmatrix}$$

b. $\begin{bmatrix} 2 & 5 \\ -5 & -13 \end{bmatrix}$

c.
$$\begin{bmatrix} 6 & -3 \\ -8 & 4 \end{bmatrix}$$

d.
$$\begin{bmatrix} 0.4 & -1.2 \\ 0.3 & 0.6 \end{bmatrix}$$

e.
$$\begin{vmatrix} 2 & 4 & 1 \\ -1 & 1 & 1 \\ 1 & 4 & 0 \end{vmatrix}$$

f.
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & -1 \\ 1 & -1 & -10 \end{vmatrix}$$

g.
$$\begin{vmatrix} 0 & -2 & 2 \\ 3 & 1 & 3 \\ 1 & -2 & 3 \end{vmatrix}$$

h.
$$\begin{vmatrix} 1 & 2 & 0 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 0 & 2 \end{vmatrix}$$

II. **Problem Solving**

- 1. Decode the message below using the matrix $D = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & 2 & 1 \end{bmatrix}$: 22, 17, 24, 9, -1, 14, -9, 34, 44, 64, 47, 77.
- 2. You received a coded message in the matrix $C = \begin{bmatrix} 30 & 30 & 69 \\ 2 & 1 & 15 \\ 9 & 14 & 20 \end{bmatrix}$. However, the

matrix *D* that will decode this message has been corrupted, and you do not know the value of entry d_{12} . You know that all entries in matrix *D* are integers. Using *x* to represent this unknown entry, the decoding matrix *D* is given by D =

 $\begin{bmatrix} 2 & x & -4 \\ -1 & 2 & 3 \\ 1 & -1 & -2 \end{bmatrix}$. Decode the message in matrix *C*.

III. Reasoning

- 1. Claire claims that she multiplied $A = \begin{bmatrix} -3 & 2 \\ 0 & 4 \end{bmatrix}$ by another matrix *X* and obtained $\begin{bmatrix} -3 & 2 \\ 0 & 4 \end{bmatrix}$ as her result. What matrix did she multiply by? How do you know?
- 2. Brandon encoded his name with the matrix $E = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$, producing the matrix $C = \begin{bmatrix} 6 & 33 & 15 & 14 \\ 12 & 66 & 30 & 28 \end{bmatrix}$. Decode the message, or explain why the original message cannot be recovered.
- 3. Janelle used the encoding matrix $E = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$ to encode the message "FROG" by multiplying $C = \begin{bmatrix} 6 & 18 \\ 15 & 7 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 24 & 30 \\ 22 & 37 \end{bmatrix}$. When Taylor decoded it, she computed $M = \begin{bmatrix} -1 & 2 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 24 & 30 \\ 22 & 37 \end{bmatrix} = \begin{bmatrix} 20 & 44 \\ 2 & -7 \end{bmatrix}$. What went wrong?
- 4. Show that the only matrix *B* such that A + B = A is the zero matrix.

IV. Modeling

1. Create a secret code that uses groups of four blocks of characters and a 4 x 4 matrix encryption key.