4.3 Matrix Reloaded

Practice Tasks

Concepts and Procedures Ι.

- 1. Matrix ______ multiplication occurs when an entire matrix is multiplied by any real number
- 2. For the matrices given below, perform each of the following calculations or explain why the calculation is not possible.

	$\mathbf{A} = \begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix}$	$\mathbf{B} = \begin{bmatrix} 2 & 1\\ -1 & 4 \end{bmatrix}$
	$C = \begin{bmatrix} 5 & 2 & 9 \\ 6 & 1 & 3 \\ -1 & 1 & 0 \end{bmatrix}$	$\mathbf{D} = \begin{bmatrix} 1 & 6 & 0 \\ 3 & 0 & 2 \\ 1 & 3 & -2 \end{bmatrix}$
a. <i>A</i> + <i>B</i>		
b. 2 <i>A</i> − <i>B</i>		
c. <i>A</i> + <i>C</i>		
d. – 2 <i>C</i>		
e. 4 <i>D</i> − 2 <i>C</i>		
f. $3B - 3B$		
g. 5 <i>B</i> – <i>C</i>		
h. <i>B</i> – 3 <i>A</i>		
i. $C + 10D$		
j. $\frac{1}{2}C + D$		
k. $\frac{1}{4}B$		
l. $3D - 4A$		
m. $\frac{1}{3}B - \frac{2}{3}A$		

3. For the matrices given below, perform each of the following calculations or explain why the calculation is not possible.

	$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 0 & 2 \end{bmatrix}$	$B = \begin{bmatrix} 2 & 1\\ 3 & 6\\ 1 & 0 \end{bmatrix}$
	$C = \begin{bmatrix} 1 & -2 & 3 \\ 1 & 1 & 4 \end{bmatrix}$	$D = \begin{bmatrix} 2 & -1 \\ -1 & 0 \\ 4 & 1 \end{bmatrix}$
a. <i>A</i> + 2 <i>B</i>		
b. 2 <i>A</i> − <i>C</i>		
c. <i>A</i> + <i>C</i>		
d. – 2 <i>C</i>		
e. 4 <i>D</i> − 2 <i>C</i>		
f. $3D - 3D$		
g. 5 <i>B</i> − <i>D</i>		
h. $C - 3A$		
i. <i>B</i> + 10 <i>D</i>		
j. $\frac{1}{2}C + A$		
k. $\frac{1}{4}B$		
l. $3A + 3B$		
m. $\frac{1}{3}B - \frac{2}{3}D$		

- 4. Let $A = \begin{bmatrix} 3 & \frac{2}{3} \\ -1 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} \frac{1}{2} & \frac{3}{2} \\ 4 & 1 \end{bmatrix}$ a. Let C = 6A + 6B. Find matrix C.
 - b. Let D = 6(A + B). Find matrix D.
 - c. What is the relationship between matrices *C* and *D*? Why do you think that is?

5. Let
$$A = \begin{bmatrix} 3 & 2 \\ -1 & 5 \\ 3 & -4 \end{bmatrix}$$
 and *X* be a 3×2 matrix. If $A + X = \begin{bmatrix} -2 & 3 \\ 4 & 1 \\ 1 & -5 \end{bmatrix}$, then find *X*.

Problem Solving II.

1. Suppose that April's Pet Supply has three stores in Cities 1, 2, and 3. Ben's Pet Mart has two stores in Cities 1 and 2. Each shop sells the same type of dog crates in size 1 (small), 2 (medium), 3 (large), and 4 (extra large).

April's and Ben's inventory in each city are stored in the tables below.

	April's Pet Supply			Ben's Pet Mar		
_	City 1	City 2	City 3		City 1	City 2
Size 1	3	5	1	Size 1	2	3
Size 2	4	2	9	Size 2	0	2
Size 3	1	4	2	Size 3	4	1
Size 4	0	0	1	Size 4	0	0

a. Create a matrix A so that $a_{i,i}$ represents the number of crates of size *i* available in April's store *j*.

b. Explain how the matrix
$$B = \begin{bmatrix} 2 & 3 & 0 \\ 0 & 2 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 can represent the dog crate inventory at Ben's Pet Mart.

c. Suppose that April and Ben merge their inventories. Find a matrix that represents their combined inventory in each of the three cities.

2. Jackie has two businesses she is considering buying and a business plan that could work for both. Consider the tables below, and answer the questions following.

	Horus's One-Stop Warehouse Supply				Re's 24-Hour	Distributions
	If business stays the same	If business improves as projected			If business stays the same	If business improves as projected
Expand to Multiple States	-\$75,000,000	\$45,000,000		Expand to Multiple States	-\$99,000,000	\$62,500,000
Invest in Drone Delivery	-\$33,000,000	\$30,000,000		Invest in Drone Delivery	-\$49,000,000	\$29,000,000
Close and Sell Out	\$20,000,000	\$20,000,000	(Close and Sell Out	\$35,000,000	\$35,000,000

- a. Create matrices *H* and *R* representing the values in the tables above such that the rows represent the different options and the columns represent the different outcomes of each option.
- b. Calculate R H. What does R H represent?
- c. Calculate H + R. What does H + R represent?
- d. Jackie estimates that the economy could cause fluctuations in her numbers by as much as 5% both ways. Find matrices to represent the best and worst case scenarios for Jackie.
- e. Which business should Jackie buy? Which of the three options should she choose? Explain your choices.

III. Reasoning

- 1. Let $A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 1 & 2 \\ 4 & 3 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 & 3 \\ 2 & 2 & 1 \\ 1 & 3 & 1 \end{bmatrix}$ represent the bus routes of two companies between three cities
 - between three cities.
 - a. Let C = A + B. Find matrix C. Explain what the resulting matrix and entry $c_{1,3}$ mean in this context.
 - b. Let D = B + A. Find matrix D. Explain what the resulting matrix and entry $d_{1,3}$ mean in this context.
 - c. What is the relationship between matrices *C* and *D*? Why do you think that is?