4.2 Graphs & Matrices

Practice Tasks

																																										l
																																										1
4				7	2						0		- 9							0			5)							2										
6											9		- 9																3	0		6				5						
4					2								2	2															3		8	2										
5													4										14									7										4
8									4				4			5							0		٤.	0					4		6				3					
8				9	- 5								9										4		5													7	3		3	
5				9						4									4						3				5										0		9	
8														19																						6			8		1	
6													0	13						4																						
3	ż						8							9				3	3	9	0	5	6 9		7	8									6							
3	ä						3										S١		TI			A1		UI	RE	4				8							2	5				
0			. 8											9		3	T	3	9	3	σ		6		3	5				0								3	6			
4			4				9						4	17								2	14							0		4										
4		2	4					1			6		6	1		8						4	17			-4	2			4		0		8			1		6		0	
3							1				Ō		6	1		7						6	5			3	4			6				7		9	2		1		4	
													5	9								4	8																	9		
6	ä	i	3				2	8						2		6	Ö					1	1 3			0																
6			2					2				5	7	8									4									5							5			1
7								6			B											6	6 C				1					9		2		3			4			F.
	ŝ				1		â	ā			į,	8		1 5			ā						8 0				1	8		6				ā.		ī	1	8	8	5		4
_																																										
																																										4

I. Concepts and Procedures

- 1. A ______ is an array of numbers organized into *m* rows and *n* columns.
- 2. A matrix containing 5 rows and 3 columns has a ______ of 5×3.
- 3. Consider the railroad map between Cities 1, 2, and 3, as shown.
 - a. Create a matrix *R* to represent the railroad map between Cities 1, 2, and 3.
 - b. How many different ways can you travel from City 1 to City 3 without passing through the same city twice?
 - c. How many different ways can you travel from City 2 to City 3 without passing through the same city twice?
 - d. How many different ways can you travel from City 1 to City 2 with exactly one connecting stop?
 - e. Why is this not a reasonable network diagram for a railroad?
- 4. Consider the subway map between stations 1, 2, and 3, as shown.
 - a. Create a matrix *S* to represent the subway map between stations 1, 2, and 3.
 - How many different ways can you travel from station 1 to station 3 without passing through the same station twice?
 - c. How many different ways can you travel directly from station 1 to station 3 with no stops?
 - d. How many different ways can you travel from station 1 to station 3 with exactly one stop?
 - e. How many different ways can you travel from station 1 to station 3 with exactly two stops? Allow for stops at repeated stations.

5. Suppose the matrix *R* represents a railroad map between cities 1, 2, 3, 4, and 5.

$$R = \begin{bmatrix} 0 & 1 & 2 & 1 & 1 \\ 2 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 2 & 2 \\ 1 & 1 & 0 & 0 & 2 \\ 1 & 1 & 3 & 0 & 0 \end{bmatrix}$$

- a. How many different ways can you travel from City 1 to City 3 with exactly one connection?
- b. How many different ways can you travel from City 1 to City 5 with exactly one connection?
- c. How many different ways can you travel from City 2 to City 5 with exactly one connection?

6. Let
$$B = \begin{bmatrix} 0 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix}$$
 represent the bus routes between 3 cities.

- a. Draw an example of a network diagram represented by this matrix.
- b. How many routes are there between City 1 and City 2 with one stop in between?
- c. How many routes are there between City 2 and City 2 with one stop in between?
- d. How many routes are there between City 3 and City 2 with one stop in between?
- e. What is the relationship between your answers to parts (b)-(d)? Formulate a conjecture.

II. Problem Solving

1. Consider the airline flight routes between Cities 1, 2, 3, and 4, as shown.

a. Create a matrix *F* to represent the flight map between Cities 1, 2, 3, and 4.

- b. How many different routes can you take from City 1 to City 4 with no stops?
- c. How many different routes can you take from City 1 to City 4 with exactly one stop?
- d. How many different routes can you take from City 3 to City 4 with exactly one stop?
- e. How many different routes can you take from City 1 to City 4 with exactly two stops? Allow for routes that include repeated cities.
- f. How many different routes can you take from City 2 to City 4 with exactly two stops? Allow for routes that include repeated cities.
- 2. Consider the following directed graph representing the number of ways Trenton can get dressed in the morning (only visible options are shown):

- a. What reasons could there be for there to be three choices for shirts after "traveling" to shorts but only two after traveling to pants?
- b. What could the order of the vertices mean in this situation?
- c. Write a matrix *A* representing this directed graph.
- d. Delete any rows of zeros in matrix *A*, and write the new matrix as matrix *B*. Does deleting this row change the meaning of any of the entries of *B*? If you had deleted the first column, would the meaning of the entries change? Explain.
- e. Calculate $b_{1,2} \cdot b_{2,4} \cdot b_{4,5}$. What does this product represent?

- f. How many different outfits can Trenton wear assuming he always wears a watch?
- 3. Faced with competition from rival companies, you have been tasked with considering the option of building a toll road going directly from City 1 to City 4. Once built, the road will provide income in the form of tolls and also enable the implementation of a non-stop bus route to and from City 1 and City 4.

Analysts have provided you with the following information (values are in millions of dollars):

	Start-up costs (expressed as profit)	Projected minimum profit per year	Projected maximum profit per year
Road	-\$63	\$65	\$100
New bus route	-\$5	\$0.75	\$1.25

- a. Express this information in a matrix *P*.
- b. What are the dimensions of the matrix?
- c. Evaluate $p_{1,1} + p_{1,2}$. What does this sum represent?

- d. Solve $p_{1,1} + t \cdot p_{1,2} = 0$ for *t*. What does the solution represent?
- e. Solve $p_{1,1} + t \cdot p_{1,3} = 0$ for *t*. What does the solution represent?
- f. Summarize your results to part (d) and (e).
- g. Evaluate $p_{2,1} + p_{2,3}$. What does this sum represent?
- h. Solve $p_{2,1} + t(p_{2,3}) = 0$ for *t*. What does the solution represent?
- i. Make your recommendation. Should the company invest in building the toll road or not? If they build the road, should they also put in a new bus route? Explain your answer.