2.4 Hyperbolic Navigation

Practice Tasks

I. Concepts and Procedures

- 1. A hyperbola is the set of all points in the plane for which the ______ of the distances from two fixed points F_1 and F_2 are called the ______ of the hyperbola.
- 2. The graph of the equation $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ with a > 0, b > 0 is a hyperbola with vertices (_____, ____) and (_____, ____) and foci ($\pm c$, 0) where c = _____. So the graph of (_____, ____) is an hyperbola with vertices (_____, ____) and (_____, ____) and (_____, ____) and (_____, ____) and (_____, ____).
- 3. Write a clever memory device to differentiate between the equation of an ellipse and a hyperbola.
- 4. Find the vertices, foci, and asymptotes of the hyperbola, and sketch the graph:
 - a. $\frac{x^2}{4} \frac{y^2}{16} = 1$
 - b. $y^2 \frac{x^2}{25} = 1$
 - c. $x^2 y^2 = 1$

a.

- d. $25y^2 9x^2 = 225$
- 5. Find an equation for the hyperbola whose graph is shown:

- 6. Find an equation for the hyperbola that satisfies the given conditions.
 - a. Foci: $(\pm 5, 0)$, Vertices: $(\pm 3, 0)$
 - b. Foci: $(0, \pm 2)$, Vertices: $(0, \pm 1)$
 - c. Foci: $(\pm 1, 0)$, Asymptotes: $y = \pm 5x$.
 - d. Asymptotes: $y = \pm x$; hyperbola passes through (5, 3)
 - e. Foci: $(\pm 5, 0)$; length of transverse axis: 1

II. Problem Solving

- *1.* **Navigation:** In the figure below, the LORAN stations at *A* and *B* are 500 mi apart, and the ship at *P* receives station *A*'s signal 2640 microseconds (μ s) before it receives the signal from station *B*.
 - *a.* Assuming that radio signals travel at 980 ft/ μ s, find d(P, A) d(P, B)
 - *b.* Find an equation for the branch of the hyperbola indicated in red in the figure. (Use miles as the unit of distance.)
 - *c.* If *A* is due north of *B* and if *P* is due east of *A*, how far is *P* from *A*?
- 2. **Comet Trajectories** Some comets, such as Halley's comet, are a permanent part of the solar system, traveling in elliptical orbits around the sun. Other comets pass through the solar system only once, following a hyperbolic path with the sun at a focus. The figure below shows the path of such a comet. Find an equation for the path, assuming that the closest the comet comes to the sun is 2×10^9 mi and that the path the comet was taking before it neared the solar system is at a right angle to the path it continues on after leaving the solar system.

III. Reasoning

- 1. Write an equation for a hyperbola where the distance between the foci is twice the length of the transverse axis.
- 2. Consider $rx^2 = -sy^2 t$. Describe the type of conic section that is formed for each of the following. Explain your reasoning.
 - a. rs = 0
 - b. *rs* > 0
 - c. r = s
 - d. *rs* < 0

IV. Modeling

- 1. **Multiple Representations**. In this problem, you will explore a special type of hyperbola called a conjugate hyperbola. This occurs when the conjugate axis of one hyperbola is the transverse axis of another.
 - a. **Graphical:** Sketch the graphs of $\frac{x^2}{36} \frac{y^2}{64} = 1$ and $\frac{y^2}{64} \frac{x^2}{36} = 1$ on the same coordinate plane.
 - b. **Analytical**: Compare the foci, vertices, and asymptotes of the graphs.
 - c. **Analytical:** Write an equation for the conjugate hyperbola $\frac{x^2}{16} \frac{y^2}{6} = 1$.
 - d. **Graphical:** Sketch the graphs of the new conjugate hyperbolas.
 - e. **Verbal:** Make a conjecture about the similarities of conjugate hyperbolas.