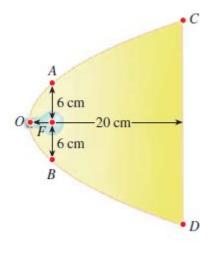
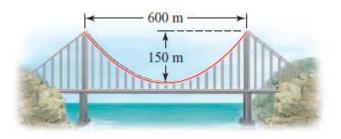
2.3 Conic Parabolas

Practice Tasks



I. Concepts and Procedures


- A parabola is the set of all points in the plane that are equidistant from a fixed point called the ______ and a fixed line called the ______ of the parabola.
- 2. The graph of the equation y² = 4*px* is a parabola with focus *F*(____, ___) and directrix x = _____. So the graph of y² = 12*x* is a parabola with focus *F*(____, ___) and directrix x = _____.
- 3. Find the focus, directrix and focal diameter of the parabola and sketch the graph:
 - a. $x^2 = 9y$
 - b. $y^2 = 4x$
 - c. $x^2 + 6y = 0$
 - d. $5x + 3y^2 = 0$
- 4. Find an equation for the parabola that has its vertex at the origin and satisfies the given condition(s).
 - a. Focus F(0,2)
 - b. Directrix x=2
 - c. Focus on the positive *x*-axis, 2 units away from the directrix
 - d. Opens upward with focus 5 units from the vertex

II. Problem Solving

- 1. **Parabolic Reflector**: A lamp with a parabolic reflector is shown in the figure. The bulb is placed at the focus, and the focal diameter is 12 cm.
 - a. Find an equation of the parabola.
 - b. Find the diameter of the opening, 20 cm from the vertex.

- 2. **Suspension Bridge**: In a suspension bridge the shape of the suspension cables is parabolic. The bridge shown in the figure has towers that are 600 m apart, and the lowest point of the suspension cables is 150 m below the top of the towers.
 - a. Find the equation of the parabolic part of the cables, placing the origin of the coordinate system at the vertex. [*Note*: This equation is used to find the length of cable needed in the construction of the bridge.]

III. Reasoning

1. Find equations for the family of parabolas with vertex at the origin and with directrices $y = \frac{1}{2}$, y = 4, and y = 8. Draw the graphs. What do you conclude?