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8.6 Power Series

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What is a power series?

• What are some important uses of power series?

• What is the connection between power series and Taylor series?

Introduction

We have noted at several points in our work with Taylor polynomials and Taylor series that
polynomial functions are the simplest possible functions in mathematics, in part because
they essentially only require addition and multiplication to evaluate. Moreover, from the
point of view of calculus, polynomials are especially nice: we can easily differentiate or
integrate any polynomial. In light of our work in Section 8.5, we now know that several
important non-polynomials have polynomial-like expansions. For example, for any real
number x,

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · +

xn

n!
+ · · · .

As we continue our study of infinite series, there are two settings where other series like
the one for ex arise: one is where we are simply given an expression like

1 + 2x + 3x2 + 4x3 + · · ·

and we seek the values of x for which the expression makes sense, while another is where
we are trying to find an unknown function f , and we think about the possibility that the
function has expression

f (x) = a0 + a1x + a2x2 + · · · + ak xk + · · · ,

and we try to determine the values of the constants a0, a1, . . .. The latter situation is
explored in Preview Activity 8.6.

Preview Activity 8.6. In Chapter 7, we learned some of the many important applications
of differential equations, and learned some approaches to solve or analyze them. Here, we
consider an important approach that will allow us to solve a wider variety of differential
equations.

Let’s consider the familiar differential equation from exponential population growth
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given by
y′ = ky, (8.25)

where k is the constant of proportionality. While we can solve this differential equation
using methods we have already learned, we take a different approach now that can be
applied to a much larger set of differential equations. For the rest of this activity, let’s
assume that k = 1. We will use our knowledge of Taylor series to find a solution to the
differential equation (8.25).

To do so, we assume that we have a solution y = f (x) and that f (x) has a Taylor series
that can be written in the form

y = f (x) =
∞∑
k=0

ak xk,

where the coefficients ak are undetermined. Our task is to find the coefficients.

(a) Assume that we can differentiate a power series term by term. By taking the
derivative of f (x) with respect to x and substituting the result into the differential
equation (8.25), show that the equation

∞∑
k=1

kak xk−1 =
∞∑
k=0

ak xk

must be satisfied in order for f (x) = ∑∞
k=0 ak xk to be a solution of the DE.

(b) Two series are equal if and only if they have the same coefficients on like power
terms. Use this fact to find a relationship between a1 and a0.

(c) Now write a2 in terms of a1. Then write a2 in terms of a0.

(d) Write a3 in terms of a2. Then write a3 in terms of a0.

(e) Write a4 in terms of a3. Then write a4 in terms of a0.

(f) Observe that there is a pattern in (b)-(e). Find a general formula for ak in terms of
a0.

(g) Write the series expansion for y using only the unknown coefficient a0. From this,
determine what familiar functions satisfy the differential equation (8.25). (Hint:
Compare to a familiar Taylor series.)

./
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Power Series

As Preview Activity 8.6 shows, it can be useful to treat an unknown function as if it has
a Taylor series, and then determine the coefficients from other information. In other
words, we define a function as an infinite series of powers of x and then determine the
coefficients based on something besides a formula for the function. This method of using
series illustrated in Preview Activity 8.6 to solve differential equations is a powerful and
important one that allows us to approximate solutions to many different types of differential
equations even if we cannot explicitly solve them. This approach is different from defining
a Taylor series based on a given function, and these functions we define with arbitrary
coefficients are given a special name.

Definition 8.9. A power series centered at x = a is a function of the form

∞∑
k=0

ck(x − a)k (8.26)

where {ck} is a sequence of real numbers and x is an independent variable.

We can substitute different values for x and test whether the resulting series converges
or diverges. Thus, a power series defines a function f whose domain is the set of x values
for which the power series converges. We therefore write

f (x) =
∞∑
k=0

ck(x − a)k .

It turns out that7, on its interval of convergence, a power series is the Taylor series of
the function that is the sum of the power series, so all of the techniques we developed in
the previous section can be applied to power series as well.

Example 8.6. Consider the power series defined by

f (x) =
∞∑
k=0

xk

2k
.

What are f (1) and f
�
3
2

�
? Find a general formula for f (x) and determine the values for

which this power series converges.

7See Exercise 2 in this section.
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Solution. If we evaluate f at x = 1 we obtain the series

∞∑
k=0

1

2k

which is a geometric series with ratio 1
2 . So we can sum this series and find that

f (1) = 1

1 − 1
2

= 2.

Similarly,

f (3/2) =
∞∑
k=0

(3
4

)k
=

1

1 − 3
4

= 4.

In general, f (x) is a geometric series with ratio x
2 and

f (x) =
∞∑
k=0

( x
2

)k
=

1

1 − x
2

=
2

2 − x

provided that −1 < x
2 < 1 (so that the ratio is less than 1 in absolute value). Thus, the

power series that defines f converges for −2 < x < 2.

As with Taylor series, we define the interval of convergence of a power series (8.26)
to be the set of values of x for which the series converges. In the same way as we did
with Taylor series, we typically use the Ratio Test to find the values of x for which the
power series converges absolutely, and then check the endpoints separately if the radius of
convergence is finite.

Example 8.7. Let f (x) =
∞∑
k=1

xk

k2
. Determine the interval of convergence of this power

series.

Solution. First we will draw graphs of some of the partial sums of this power series to get
an idea of the interval of convergence. Let

Sn(x) =
n∑

k=1

xk

k2

for each n ≥ 1. Figure 8.7 shows plots of S10(x) (in red), S25(x) (in blue), and S50(x) (in
green). The behavior of S50 particularly highlights that it appears to be converging to
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Figure 8.7: Graphs of partial sums of the power series
∑∞

k=1
xk

k2

a particular curve on the interval (−1, 1), while growing without bound outside of that
interval. This suggests that the interval of convergence might be −1 < x < 1. To more
fully understand this power series, we apply the Ratio Test to determine the values of x
for which the power series converges absolutely. For the given series, we have

ak =
xk

k2
,

so

lim
k→∞

|ak+1 |
|ak | = lim

k→∞

|x |k+1
(k+1)2
|x |k
k2

= lim
k→∞

|x |
(

k
k + 1

)2
= |x | lim

k→∞

(
k

k + 1

)2
= |x |.

Therefore, the Ratio Test tells us that the given power series f (x) converges absolutely
when |x | < 1 and diverges when |x | > 1. Since the Ratio Test is inconclusive when |x | = 1,
we need to check x = 1 and x = −1 individually.

When x = 1, observe that

f (1) =
∞∑
k=1

1

k2
.
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This is a p-series with p > 1, which we know converges. When x = −1, we have

f (−1) =
∞∑
k=1

(−1)k
k2

.

This is an alternating series, and since the sequence
{

1
n2

}
decreases to 0, the power series

converges when x = −1 by the Alternating Series Test. Thus, the interval of convergence
of this power series is −1 ≤ x ≤ 1.

Activity 8.28.

Determine the interval of convergence of each power series.

(a)
∞∑
k=1

(x − 1)k
3k

(b)
∞∑
k=1

k xk

(c)
∞∑
k=1

k2(x + 1)k
4k

(d)
∞∑
k=1

xk

(2k)!

(e)
∞∑
k=1

k!xk

C

Manipulating Power Series

Recall that we know several power series expressions for important functions such as
sin(x) and ex . Often, we can take a known power series expression for such a function
and use that series expansion to find a power series for a different, but related, function.
The next activity demonstrates one way to do this.

Activity 8.29.

Our goal in this activity is to find a power series expansion for f (x) = 1

1 + x2
centered

at x = 0.
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While we could use the methods of Section 8.5 and differentiate f (x) = 1

1 + x2
several

times to look for patterns and find the Taylor series for f (x), we seek an alternate
approach because of how complicated the derivatives of f (x) quickly become.

(a) What is the Taylor series expansion for g(x) = 1
1−x ? What is the interval of

convergence of this series?

(b) How is g(−x2) related to f (x)? Explain, and hence substitute −x2 for x in the
power series expansion for g(x). Given the relationship between g(−x2) and
f (x), how is the resulting series related to f (x)?

(c) For which values of x will this power series expansion for f (x) be valid? Why?

C

In a previous section we determined several important Maclaurin series and their
intervals of convergence. Here, we list these key functions and remind ourselves of their
corresponding expansions.

sin(x) =
∞∑
k=0

(−1)k x2k+1

(2k + 1)! for −∞ < x < ∞

cos(x) =
∞∑
k=0

(−1)k x2k

(2k)! for −∞ < x < ∞

ex =
∞∑
k=0

xk

k!
for −∞ < x < ∞

1

1 − x
=

∞∑
k=0

xk for −1 < x < 1

As we saw in Activity 8.29, we can use these known series to find other power series
expansions for related functions such as sin(x2), e5x

3
, and cos(x5). Another important

way that we can manipulate power series is illustrated in the next activity.

Activity 8.30.

Let f be the function given by the power series expansion

f (x) =
∞∑
k=0

(−1)k x2k

(2k)! .

(a) Assume that we can differentiate a power series term by term, just like we can
differentiate a (finite) polynomial. Use the fact that

f (x) = 1 −
x2

2!
+

x4

4!
−

x6

6!
+ · · · + (−1)k x2k

(2k)! + · · ·



8.6. POWER SERIES 525

to find a power series expansion for f ′(x).
(b) Observe that f (x) and f ′(x) have familiar Taylor series. What familiar functions

are these? What known relationship does our work demonstrate?

(c) What is the series expansion for f ′′(x)? What familiar function is f ′′(x)?

C

It turns out that our work in Activity 8.29 holds more generally. The corresponding
theorem, which we will not prove, states that we can differentiate a power series for a
function f term by term and obtain the series expansion for f ′, and similarly we can
integrate a series expansion for a function f term by term and obtain the series expansion

for
∫

f (x) dx. For both, the radius of convergence of the resulting series is the same

as the original, though it is possible that the convergence status of the resulting series
may differ at the endpoints. The formal statement of the Power Series Differentiation and
Integration Theorem follows.

Power Series Differentiation and Integration Theorem. Suppose f (x) has a
power series expansion

f (x) =
∞∑
k=0

ck xk

so that the series converges absolutely to f (x) on the interval −r < x < r . Then, the

power series
∞∑
k=1

kck xk−1 obtained by differentiating the power series for f (x) term
by term converges absolutely to f ′(x) on the interval −r < x < r . That is,

f ′(x) =
∞∑
k=1

kck xk−1, for |x | < r .

Similarly, the power series
∞∑
k=0

ck
xk+1

k + 1
obtained by integrating the power series for

f (x) term by term converges absolutely on the interval −r < x < r , and∫
f (x) dx =

∞∑
k=0

ck
xk+1

k + 1
+ C, for |x | < r .

This theorem validates the steps we took in Activity 8.30. It is important to note
that this result about differentiating and integrating power series tells us that we can
differentiate and integrate term by term on the interior of the interval of convergence, but
it does not tell us what happens at the endpoints of this interval. We always need to check
what happens at the endpoints separately. More importantly, we can use use the approach
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of differentiating or integrating a series term by term to find new series.

Example 8.8. Find a series expansion centered at x = 0 for arctan(x), as well as its
interval of convergence.

Solution. While we could differentiate arctan(x) repeatedly and look for patterns in the
derivative values at x = 0 in an attempt to find the Maclaurin series for arctan(x) from
the definition, it turns out to be far easier to use a known series in an insightful way. In
Activity 8.29, we found that

1

1 + x2
=

∞∑
k=0

(−1)k x2k

for −1 < x < 1. Recall that
d
dx

[arctan(x)] = 1

1 + x2
,

and therefore ∫
1

1 + x2
dx = arctan(x) + C.

It follows that we can integrate the series for
1

1 + x2
term by term to obtain the power

series expansion for arctan(x). Doing so, we find that

arctan(x) =
∫

*
,

∞∑
k=0

(−1)k x2k+
-

dx

=

∞∑
k=0

(∫
(−1)k x2k dx

)

= *
,

∞∑
k=0

(−1)k x2k+1

2k + 1
+
-
+ C.

The Power Series Differentiation and Integration Theorem tells us that this equality is
valid for at least −1 < x < 1.

To find the value of the constant C, we can use the fact that arctan(0) = 0. So

0 = arctan(0) = *
,

∞∑
k=0

(−1)k 02k+1

2k + 1
+
-
+ C = C,

and we must have C = 0. Therefore,

arctan(x) =
∞∑
k=0

(−1)k x2k+1

2k + 1
(8.27)
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for at least −1 < x < 1.

It is a straightforward exercise to check that the power series

∞∑
k=0

(−1)k x2k+1

2k + 1

converges both when x = −1 and when x = 1; in each case, we have an alternating series
with terms 1

2k+1 that decrease to 0, and thus the interval of convergence for the series
expansion for arctan(x) in Equation (8.27) is −1 ≤ x ≤ 1.

Activity 8.31.

Find a power series expansion for ln(1+ x) centered at x = 0 and determine its interval

of convergence. (Hint: Use the Taylor series expansion for
1

1 + x
centered at x = 0.)

C

Summary

In this section, we encountered the following important ideas:

• A power series is a series of the form

∞∑
k=0

ak xk .

• We can often assume a solution to a given problem can be written as a power series,
then use the information in the problem to determine the coefficients in the power series.
This method allows us to approximate solutions to certain problems using partial sums
of the power series; that is, we can find approximate solutions that are polynomials.

• The connection between power series and Taylor series is that they are essentially the
same thing: on its interval of convergence a power series is the Taylor series of its sum.
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Exercises

1. We can use power series to approximate definite integrals to which known techniques of
integration do not apply. We will illustrate this in this exercise with the definite integral∫ 1

0
sin(x2) ds.

(a) Use the Taylor series for sin(x) to find the Taylor series for sin(x2). What is
the interval of convergence for the Taylor series for sin(x2)? Explain.

(b) Integrate the Taylor series for sin(x2) term by term to obtain a power series
expansion for

∫
sin(x2) dx.

(c) Use the result from part (b) to explain how to evaluate
∫ 1

0
sin(x2) dx. Determine

the number of terms you will need to approximate
∫ 1

0
sin(x2) dx to 3 decimal

places.

2. There is an important connection between power series and Taylor series. Suppose f
is defined by a power series centered at 0 so that

f (x) =
∞∑
k=0

ak xk .

(a) Determine the first 4 derivatives of f evaluated at 0 in terms of the coefficients
ak .

(b) Show that f (n)(0) = n!an for each positive integer n.

(c) Explain how the result of (b) tells us the following:

On its interval of convergence, a power series is the Taylor series of its sum.

3. In this exercise we will begin with a strange power series and then find its sum. The
Fibonacci sequence { fn} is a famous sequence whose first few terms are

f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5, f6 = 8, f7 = 13, · · · ,

where each term in the sequence after the first two is the sum of the preceding two
terms. That is, f0 = 0, f1 = 1 and for n ≥ 2 we have

fn = fn−1 + fn−2.

Now consider the power series

F(x) =
∞∑
k=0

fk xk .
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We will determine the sum of this power series in this exercise.

(a) Explain why each of the following is true.

(i) xF(x) =
∞∑
k=1

fk−1xk

(ii) x2F(x) =
∞∑
k=2

fk−2xk

(b) Show that
F(x) − xF(x) − x2F(x) = x.

(c) Now use the equation

F(x) − xF(x) − x2F(x) = x

to find a simple form for F(x) that doesn’t involve a sum.

(d) Use a computer algebra system or some other method to calculate the first 8
derivatives of x

1−x−x2
evaluated at 0. Why shouldn’t the results surprise you?

4. Airy’s equation8

y′′ + xy = 0, (8.28)

can be used to model an undamped vibrating spring with spring constant x (note that
y is an unknown function of x). So the solution to this differential equation will tell
us the behavior of a spring-mass system as the spring ages (like an automobile shock
absorber). Assume that a solution y = f (x) has a Taylor series that can be written in
the form

y =

∞∑
k=0

ak xk,

where the coefficients are undetermined. Our job is to find the coefficients.

(a) Differentiate the series for y term by term to find the series for y′. Then repeat
to find the series for y′′.

(b) Substitute your results from part (a) into the Airy equation and show that we
can write Equation (8.28) in the form

∞∑
k=2

(k − 1)kak xk−2 +
∞∑
k=0

ak xk+1 = 0. (8.29)

(c) At this point, it would be convenient if we could combine the series on the left
in (8.29), but one written with terms of the form xk−2 and the other with terms

8The general differential equations of the form y′′ ± k2xy = 0 is called Airy’s equation. These equations
arise in many problems, such as the study of diffraction of light, diffraction of radio waves around an object,
aerodynamics, and the buckling of a uniform column under its own weight.
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in the form xk+1. Explain why

∞∑
k=2

(k − 1)kak xk−2 =
∞∑
k=0

(k + 1)(k + 2)ak+2xk . (8.30)

(d) Now show that
∞∑
k=0

ak xk+1 =
∞∑
k=1

ak−1xk . (8.31)

(e) We can now substitute (8.30) and (8.31) into (8.29) to obtain

∞∑
n=0

(n + 1)(n + 2)an+2xn +
∞∑
n=1

an−1xn = 0. (8.32)

Combine the like powers of x in the two series to show that our solution must
satisfy

2a2 +
∞∑
k=1

[(k + 1)(k + 2)ak+2 + ak−1] xk = 0. (8.33)

(f) Use equation (8.33) to show the following:

(i) a3k+2 = 0 for every positive integer k ,
(ii) a3k = 1

(2)(3)(5)(6)· · ·(3k−1)(3k)a0 for k ≥ 1,

(iii) a3k+1 = 1
(3)(4)(6)(7)· · ·(3k)(3k+1)a1 for k ≥ 1.

(g) Use the previous part to conclude that the general solution to the Airy equation
(8.28) is

y = a0 *
,
1 +

∞∑
k=1

x3k

(2)(3)(5)(6) · · · (3k − 1)(3k)
+
-

+a1 *
,

x +
∞∑
k=1

x3k+1

(3)(4)(6)(7) · · · (3k)(3k + 1)
+
-
.

Any values for a0 and a1 then determine a specific solution that we can
approximate as closely as we like using this series solution.


