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8.5 Taylor Polynomials and Taylor Series

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What is a Taylor polynomial? For what purposes are Taylor polynomials used?

• What is a Taylor series?

• How are Taylor polynomials and Taylor series different? How are they related?

• How do we determine the accuracy when we use a Taylor polynomial to approxi-
mate a function?

Introduction

In our work to date in Chapter 8, essentially every sum we have considered has been a
sum of numbers. In particular, each infinite series that we have discussed has been a series
of real numbers, such as

1 +
1

2
+
1

4
+ · · · +

1

2k
+ · · · =

∞∑
k=0

1

2k
. (8.18)

In the remainder of this chapter, we will expand our notion of series to include series that
involve a variable, say x. For instance, if in the geometric series in Equation (8.18) we
replace the ratio r = 1

2 with the variable x, then we have the infinite (still geometric) series

1 + x + x2 + · · · + xk + · · · =
∞∑
k=0

xk . (8.19)

Here we see something very interesting: since a geometric series converges whenever its
ratio r satisfies |r | < 1, and the sum of a convergent geometric series is a

1−r , we can say
that for |x | < 1,

1 + x + x2 + · · · + xk + · · · =
1

1 − x
. (8.20)

Note well what Equation (8.20) states: the non-polynomial function 1
1−x on the right is

equal to the infinite polynomial expresssion on the left. Moreover, it appears natural to
truncate the infinite sum on the left (whose terms get very small as k gets large) and say,
for example, that

1 + x + x2 + x3 ≈
1

1 − x
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for small values of x. This shows one way that a polynomial function can be used to
approximate a non-polynomial function; such approximations are one of the main themes
in this section and the next.

In Preview Activity 8.5, we begin our explorations of approximating non-polynomial
functions with polynomials, from which we will also develop ideas regarding infinite series
that involve a variable, x.

Preview Activity 8.5. Preview Activity 8.3 showed how we can approximate the number
e using linear, quadratic, and other polynomial functions; we then used similar ideas
in Preview Activity 8.4 to approximate ln(2). In this activity, we review and extend the
process to find the “best" quadratic approximation to the exponential function ex around
the origin. Let f (x) = ex throughout this activity.

(a) Find a formula for P1(x), the linearization of f (x) at x = 0. (We label this
linearization P1 because it is a first degree polynomial approximation.) Recall that
P1(x) is a good approximation to f (x) for values of x close to 0. Plot f and P1

near x = 0 to illustrate this fact.

(b) Since f (x) = ex is not linear, the linear approximation eventually is not a very
good one. To obtain better approximations, we want to develop a different
approximation that “bends” to make it more closely fit the graph of f near x = 0.
To do so, we add a quadratic term to P1(x). In other words, we let

P2(x) = P1(x) + c2x2

for some real number c2. We need to determine the value of c2 that makes the
graph of P2(x) best fit the graph of f (x) near x = 0.

Remember that P1(x) was a good linear approximation to f (x) near 0; this is
because P1(0) = f (0) and P′1(0) = f ′(0). It is therefore reasonable to seek a value
of c2 so that

P2(0) = f (0),
P′2(0) = f ′(0), and
P′′2 (0) = f ′′(0).

Remember, we are letting P2(x) = P1(x) + c2x2.

(i) Calculate P2(0) to show that P2(0) = f (0).
(ii) Calculate P′2(0) to show that P′2(0) = f ′(0).
(iii) Calculate P′′2 (x). Then find a value for c2 so that P′′2 (0) = f ′′(0).
(iv) Explain why the condition P′′2 (0) = f ′′(0) will put an appropriate “bend" in

the graph of P2 to make P2 fit the graph of f around x = 0.

./
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Taylor Polynomials

Preview Activity 8.5 illustrates the first steps in the process of approximating compli-
cated functions with polynomials. Using this process we can approximate trigonometric,
exponential, logarithmic, and other nonpolynomial functions as closely as we like (for
certain values of x) with polynomials. This is extraordinarily useful in that it allows us to
calculate values of these functions to whatever precision we like using only the operations
of addition, subtraction, multiplication, and division, which are operations that can be
easily programmed in a computer.

We next extend the approach in Preview Activity 8.5 to arbitrary functions at arbitrary
points. Let f be a function that has as many derivatives at a point x = a as we need.
Since first learning it in Section 1.8, we have regularly used the linear approximation P1(x)
to f at x = a, which in one sense is the best linear approximation to f near a. Recall that
P1(x) is the tangent line to f at (a, f (a)) and is given by the formula

P1(x) = f (a) + f ′(a)(x − a).
If we proceed as in Preview Activity 8.5, we then want to find the best quadratic approxi-
mation

P2(x) = P1(x) + c2(x − a)2
so that P2(x) more closely models f (x) near x = a. Consider the following calculations of
the values and derivatives of P2(x):

P2(x) = P1(x) + c2(x − a)2
P′2(x) = P′1(x) + 2c2(x − a)
P′′2 (x) = 2c2

P2(a) = P1(a) = f (a)
P′2(a) = P′1(a) = f ′(a)
P′′2 (a) = 2c2.

To make P2(x) fit f (x) better than P1(x), we want P2(x) and f (x) to have the same
concavity at x = a. That is, we want to have

P′′2 (a) = f ′′(a).
This implies that

2c2 = f ′′(a)
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and thus

c2 =
f ′′(a)
2

.

Therefore, the quadratic approximation P2(x) to f centered at x = 0 is

P2(x) = f (a) + f ′(a)(x − a) + f ′′(a)
2!

(x − a)2.

This approach extends naturally to polynomials of higher degree. In this situation, we
define polynomials

P3(x) = P2(x) + c3(x − a)3,
P4(x) = P3(x) + c4(x − a)4,
P5(x) = P4(x) + c5(x − a)5,

and so on, with the general one being

Pn(x) = Pn−1(x) + cn(x − a)n.
The defining property of these polynomials is that for each n, Pn(x) must have its value
and all its first n derivatives agree with those of f at x = a. In other words we require that

P(k)
n (a) = f (k)(a)

for all k from 0 to n.

To see the conditions under which this happens, suppose

Pn(x) = c0 + c1(x − a) + c2(x − a)2 + · · · + cn(x − a)n.
Then

P(0)
n (a) = c0

P(1)
n (a) = c1

P(2)
n (a) = 2c2

P(3)
n (a) = (2)(3)c3

P(4)
n (a) = (2)(3)(4)c4

P(5)
n (a) = (2)(3)(4)(5)c5

and, in general,
P(k)
n (a) = (2)(3)(4) · · · (k − 1)(k)ck = k!ck .
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So having
P(k)
n (a) = f (k)(a)

means that
k!ck = f (k)(a)

and therefore

ck =
f (k)(a)

k!
for each value of k . In this expression for ck , we have found the formula for the degree n
polynomial approximation of f that we seek.

The nth order Taylor polynomial of f centered at x = a is given by

Pn(x) = f (a) + f ′(a)(x − a) + f ′′(a)
2!

(x − a)2 + · · · + f (n)(a)
n!

(x − a)n

=

n∑
k=0

f (k)(a)
k!

(x − a)k .

This degree n polynomial approximates f (x) near x = a and has the property that
P(k)
n (a) = f (k)(a) for k = 0 . . . n.

Example 8.2. Determine the third order Taylor polynomial for f (x) = ex , as well as the
general nth order Taylor polynomial for f centered at x = 0.

Solution. We know that f ′(x) = ex and so f ′′(x) = ex and f ′′′(x) = ex . Thus,

f (0) = f ′(0) = f ′′(0) = f ′′′(0) = 1.

So the third order Taylor polynomial of f (x) = ex centered at x = 0 is

P3(x) = f (0) + f ′(0)(x − 0) + f ′′(0)
2!

(x − 0)2 + f ′′′(0)
3!

(x − 0)3 = 1 + x +
x2

2
+

x3

6
.

In general, for the exponential function f we have f (k)(x) = ex for every positive integer
k . Thus, the kth term in the nth order Taylor polynomial for f (x) centered at x = 0 is

f (k)(0)
k!

(x − 0)k = 1

k!
xk .

Therefore, the nth order Taylor polynomial for f (x) = ex centered at x = 0 is

Pn(x) = 1 + x +
x2

2!
+ · · · +

1

n!
xn =

n∑
k=0

xk

k!
.
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Activity 8.22.

We have just seen that the nth order Taylor polynomial centered at a = 0 for the
exponential function ex is

n∑
k=0

xk

k!
.

In this activity, we determine small order Taylor polynomials for several other famil-
iar functions, and look for general patterns that will help us find the Taylor series
expansions a bit later.

(a) Let f (x) = 1
1−x .

(i) Calculate the first four derivatives of f (x) at x = 0. Then find the fourth
order Taylor polynomial P4(x) for 1

1−x centered at 0.
(ii) Based on your results from part (i), determine a general formula for f (k)(0).

(b) Let f (x) = cos(x).
(i) Calculate the first four derivatives of f (x) at x = 0. Then find the fourth

order Taylor polynomial P4(x) for cos(x) centered at 0.
(ii) Based on your results from part (i), find a general formula for f (k)(0).

(Think about how k being even or odd affects the value of the kth deriva-
tive.)

(c) Let f (x) = sin(x).
(i) Calculate the first four derivatives of f (x) at x = 0. Then find the fourth

order Taylor polynomial P4(x) for sin(x) centered at 0.
(ii) Based on your results from part (i), find a general formula for f (k)(0).

(Think about how k being even or odd affects the value of the kth deriva-
tive.)

C

It is possible that an nth order Taylor polynomial is not a polynomial of degree n;
that is, the order of the approximation can be different from the degree of the polynomial.
For example, in Activity 8.22 we found that the second order Taylor polynomial P2(x)
centered at 0 for sin(x) is P2(x) = x. In this case, the second order Taylor polynomial is a
degree 1 polynomial.

Taylor Series

In Activity 8.22 we saw that the fourth order Taylor polynomial P4(x) for sin(x) centered
at 0 is

P4(x) = x −
x3

3!
.
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The pattern we found for the derivatives f (k)(0) describe the higher-order Taylor polyno-
mials, e.g.,

P5(x) = x −
x3

3!
+

x(5)

5!
, P7(x) = x −

x3

3!
+

x(5)

5!
−

x(7)

7!
, P9(x) = x −

x3

3!
+

x(5)

5!
−

x(7)

7!
+

x(9)

9!
,

and so on. It is instructive to consider the graphical behavior of these functions; Figure 8.6
shows the graphs of a few of the Taylor polynomials centered at 0 for the sine function.
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Figure 8.6: The order 1, 5, 7, and 9 Taylor polynomials centered at x = 0 for f (x) = sin(x).

Notice that P1(x) is close to the sine function only for values of x that are close to 0,
but as we increase the degree of the Taylor polynomial the Taylor polynomials provide
a better fit to the graph of the sine function over larger intervals. This illustrates the
general behavior of Taylor polynomials: for any sufficiently well-behaved function, the
sequence {Pn(x)} of Taylor polynomials converges to the function f on larger and larger
intervals (though those intervals may not necessarily increase without bound). If the Taylor
polynomials ultimately converge to f on its entire domain, we write

f (x) =
∞∑
k=0

f (k)(a)
k!

(x − a)k .

Definition 8.8. Let f be a function all of whose derivatives exist at x = a. The Taylor
series for f centered at x = a is the series Tf (x) defined by

Tf (x) =
∞∑
k=0

f (k)(a)
k!

(x − a)k .

In the special case where a = 0 in Definition 8.8, the Taylor series is also called the
Maclaurin series for f . From Example 8.2 we know the nth order Taylor polynomial
centered at 0 for the exponential function ex ; thus, the Maclaurin series for ex is

∞∑
k=0

xk

k!
.



508 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES

Activity 8.23.

In Activity 8.22 we determined small order Taylor polynomials for a few familiar
functions, and also found general patterns in the derivatives evaluated at 0. Use that
information to write the Taylor series centered at 0 for the following functions.

(a) f (x) = 1
1−x

(b) f (x) = cos(x) (You will need to carefully consider how to indicate that many of
the coefficients are 0. Think about a general way to represent an even integer.)

(c) f (x) = sin(x) (You will need to carefully consider how to indicate that many of
the coefficients are 0. Think about a general way to represent an odd integer.)

C

The next activity further considers the important issue of the x-values for which the
Taylor series of a function converges to the function itself.

Activity 8.24.
(a) Plot the graphs of several of the Taylor polynomials centered at 0 (of order at

least 5) for ex and convince yourself that these Taylor polynomials converge to
ex for every value of x.

(b) Draw the graphs of several of the Taylor polynomials centered at 0 (of order at
least 6) for cos(x) and convince yourself that these Taylor polynomials converge
to cos(x) for every value of x. Write the Taylor series centered at 0 for cos(x).

(c) Draw the graphs of several of the Taylor polynomials centered at 0 for 1
1−x .

Based on your graphs, for what values of x do these Taylor polynomials appear
to converge to 1

1−x ? How is this situation different from what we observe with
ex and cos(x)? In addition, write the Taylor series centered at 0 for 1

1−x .

C

The Maclaurin series for ex , sin(x), cos(x), and 1
1−x will be used frequently, so we

should be certain to know and recognize them well.

The Interval of Convergence of a Taylor Series

In the previous section (in Figure 8.6 and Activity 8.24) we observed that the Taylor
polynomials centered at 0 for ex , cos(x), and sin(x) converged to these functions for
all values of x in their domain, but that the Taylor polynomials centered at 0 for 1

1−x
converged to 1

1−x for only some values of x. In fact, the Taylor polynomials centered at 0
for 1

1−x converge to 1
1−x on the interval (−1, 1) and diverge for all other values of x. So

the Taylor series for a function f (x) does not need to converge for all values of x in the
domain of f .

Our observations to date suggest two natural questions: can we determine the values
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of x for which a given Taylor series converges? Moreover, given the Taylor series for a
function f , does it actually converge to f (x) for those values of x for which the Taylor
series converges?

Example 8.3. Graphical evidence suggests that the Taylor series centered at 0 for ex

converges for all values of x. To verify this, use the Ratio Test to determine all values of x
for which the Taylor series

∞∑
k=0

xk

k!
(8.21)

converges absolutely.

Solution. In previous work, we used the Ratio Test on series of numbers that did not
involve a variable; recall, too, that the Ratio Test only applies to series of nonnegative
terms. In this example, we have to address the presence of the variable x. Because we are
interested in absolute convergence, we apply the Ratio Test to the series

∞∑
k=0

�����
xk

k!

�����
=

∞∑
k=0

|x |k
k!

.

Now, observe that

lim
k→∞

ak+1
ak
= lim

k→∞

|x |k+1
(k+1)!
|x |k
k

= lim
k→∞

|x |k+1k!
|x |k(k + 1)!

= lim
k→∞

|x |
k + 1

= 0

for any value of x. So the Taylor series (8.21) converges absolutely for every value of x,
and thus converges for every value of x.

One key question remains: while the Taylor series for ex converges for all x, what we
have done does not tell us that this Taylor series actually converges to ex for each x. We’ll
return to this question when we consider the error in a Taylor approximation near the end
of this section.
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We can apply the main idea from Example 8.3 in general. To determine the values of
x for which a Taylor series

∞∑
k=0

ck(x − a)k,

centered at x = a will converge, we apply the Ratio Test with ak = |ck(x − a)k | and recall
that the series to which the Ratio Test is applied converges if limk→∞

ak+1

ak
< 1.

Observe that
ak+1
ak
= |x − a| |ck+1 ||ck | ,

so when we apply the Ratio Test, we get that

lim
k→∞

ak+1
ak
= lim

k→∞
|x − a| ck+1

ck
.

Note further that ck =
f (k)(a)
k! , and say that

lim
k→∞

ck+1
ck
= L.

Thus, we have found that
lim
k→∞

ak+1
ak
= |x − a| · L.

There are three important possibilities for L: L can be 0, a finite positive value, or infinite.
Based on this value of L, we can therefore determine for which values of x the original
Taylor series converges.

• If L = 0, then the Taylor series converges on (−∞,∞).
• If L is infinite, then the Taylor series converges only at x = a.

• If L is finite and nonzero, then the Taylor series converges absolutely for all x that
satisfy

|x − a| · L < 1.

In other words, the series converges absolutely for all x such that

|x − a| < 1

L
,

which is also the interval (
a −

1

L
, a +

1

L

)
.

Because the Ratio Test is inconclusive when the |x − a| · L = 1, the endpoints a ± 1
L

have to be checked separately.

It is important to notice that the set of x values at which a Taylor series converges
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is always an interval centered at x = a. For this reason, the set on which a Taylor series
converges is called the interval of convergence. Half the length of the interval of convergence
is called the radius of convergence. If the interval of convergence of a Taylor series is infinite,
then we say that the radius of convergence is infinite.

Activity 8.25.
(a) Use the Ratio Test to explicitly determine the interval of convergence of the

Taylor series for f (x) = 1
1−x centered at x = 0.

(b) Use the Ratio Test to explicitly determine the interval of convergence of the
Taylor series for f (x) = cos(x) centered at x = 0.

(c) Use the Ratio Test to explicitly determine the interval of convergence of the
Taylor series for f (x) = sin(x) centered at x = 0.

C

The Ratio Test tells us how we can determine the set of x values for which a Taylor
series converges absolutely. However, just because a Taylor series for a function f
converges, we cannot be certain that the Taylor series actually converges to f (x) on its
interval of convergence. To show why and where a Taylor series does in fact converge to
the function f , we next consider the error that is present in Taylor polynomials.

Error Approximations for Taylor Polynomials

We now know how to find Taylor polynomials for functions such as sin(x), as well as
how to determine the interval of convergence of the corresponding Taylor series. We
next develop an error bound that will tell us how well an nth order Taylor polynomial
Pn(x) approximates its generating function f (x). This error bound will also allow us
to determine whether a Taylor series on its interval of convergence actually equals the
function f from which the Taylor series is derived. Finally, we will be able to use the error
bound to determine the order of the Taylor polynomial Pn(x) for a function f that we
need to ensure that Pn(x) approximates f (x) to any desired degree of accuracy.

In all of this, we need to compare Pn(x) to f (x). For this argument, we assume through-
out that we center our approximations at 0 (a similar argument holds for approximations
centered at a). We define the exact error, En(x), that results from approximating f (x) with
Pn(x) by

En(x) = f (x) − Pn(x).
We are particularly interested in |En(x)|, the distance between Pn and f . Note that since

P(k)
n (0) = f (k)(0)

for 0 ≤ k ≤ n, we know that
E(k)
n (0) = 0
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for 0 ≤ k ≤ n. Furthermore, since Pn(x) is a polynomial of degree less than or equal to n,
we know that

P(n+1)
n (x) = 0.

Thus, since E(n+1)
n (x) = f (n+1)(x) − P(n+1)

n (x), it follows that
E(n+1)
n (x) = f (n+1)(x)

for all x.

Suppose that we want to approximate f (x) at a number c close to 0 using Pn(c). If we
assume | f (n+1)(t)| is bounded by some number M on [0, c], so that

��� f (n+1)(t)��� ≤ M

for all 0 ≤ t ≤ c, then we can say that

���E
(n+1)
n (t)��� =

��� f (n+1)(t)��� ≤ M

for all t between 0 and c. Equivalently,

− M ≤ E(n+1)
n (t) ≤ M (8.22)

on [0, c]. Next, we integrate the three terms in the inequality (8.22) from t = 0 to t = x,
and thus find that ∫ x

0
−M dt ≤

∫ x

0
E(n+1)
n (t) dt ≤

∫ x

0
M dt

for every value of x in [0, c]. Since E(n)
n (0) = 0, the First FTC tells us that

−M x ≤ E(n)
n (x) ≤ M x

for every x in [0, c].
Integrating the most recent inequality, we obtain∫ x

0
−Mt dt ≤

∫ x

0
E(n)
n (t) dt ≤

∫ x

0
Mt dt

and thus

−M
x2

2
≤ E(n−1)

n (x) ≤ M
x2

2

for all x in [0, c].
Integrating n times, we arrive at

−M
xn+1

(n + 1)! ≤ En(x) ≤ M
xn+1

(n + 1)!
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for all x in [0, c]. This enables us to conclude that

|En(x)| ≤ M
|x |n+1
(n + 1)!

for all x in [0, c], which shows an important bound on the approximation’s error, En.

Our work above was based on the approximation centered at a = 0; the argument may
be generalized to hold for any value of a, which results in the following theorem.

The Lagrange Error Bound for Pn(x). Let f be a continuous function with n +
1 continuous derivatives. Suppose that M is a positive real number such that�
f (n+1)(x)� ≤ M on the interval [a, c]. If Pn(x) is the nth order Taylor polynomial for
f (x) centered at x = a, then

|Pn(c) − f (c)| ≤ M
|c − a|n+1
(n + 1)! .

This error bound may now be used to tell us important information about Taylor
polynomials and Taylor series, as we see in the following examples and activities.

Example 8.4. Determine how well the 10th order Taylor polynomial P10(x) for sin(x),
centered at 0, approximates sin(2).

Solution. To answer this question we use f (x) = sin(x), c = 2, a = 0, and n = 10 in the
Lagrange error bound formula. To use the bound, we also need to find an appropriate
value for M . Note that the derivatives of f (x) = sin(x) are all equal to ± sin(x) or ± cos(x).
Thus,

��� f (n+1)(x)��� ≤ 1

for any n and x. Therefore, we can choose M to be 1. Then

|P10(2) − f (2)| ≤ (1) |2 − 0|
11

(11)! =
211

(11)! ≈ 0.00005130671797.

So P10(2) approximates sin(2) to within at most 0.00005130671797. A computer algebra
system tells us that

P10(2) ≈ 0.9093474427 and sin(2) ≈ 0.9092974268

with an actual difference of about 0.0000500159.
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Activity 8.26.

Let Pn(x) be the nth order Taylor polynomial for sin(x) centered at x = 0. Determine
how large we need to choose n so that Pn(2) approximates sin(2) to 20 decimal places.

C

Example 8.5. Show that the Taylor series for sin(x) actually converges to sin(x) for all x.

Solution. Recall from the previous example that since f (x) = sin(x), we know

��� f (n+1)(x)��� ≤ 1

for any n and x. This allows us to choose M = 1 in the Lagrange error bound formula.
Thus,

|Pn(x) − sin(x)| ≤ |x |n+1
(n + 1)! (8.23)

for every x.

We showed in earlier work with the Taylor series
∞∑
k=0

xk

k!
converges for every value of x.

Since the terms of any convergent series must approach zero, it follows that

lim
n→∞

xn+1

(n + 1)! = 0

for every value of x. Thus, taking the limit as n → ∞ in the inequality (8.23), it follows
that

lim
n→∞

|Pn(x) − sin(x)| = 0.

As a result, we can now write

sin(x) =
∞∑
n=0

(−1)nx2n+1

(2n + 1)!

for every real number x.

Activity 8.27.
(a) Show that the Taylor series centered at 0 for cos(x) converges to cos(x) for

every real number x.

(b) Next we consider the Taylor series for ex .
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(i) Show that the Taylor series centered at 0 for ex converges to ex for every
nonnegative value of x.

(ii) Show that the Taylor series centered at 0 for ex converges to ex for every
negative value of x.

(iii) Explain why the Taylor series centered at 0 for ex converges to ex for
every real number x. Recall that we earlier showed that the Taylor series
centered at 0 for ex converges for all x, and we have now completed the
argument that the Taylor series for ex actually converges to ex for all x.

(c) Let Pn(x) be the nth order Taylor polynomial for ex centered at 0. Find a value
of n so that Pn(5) approximates e5 correct to 8 decimal places.

C

Summary

In this section, we encountered the following important ideas:

• We can use Taylor polynomials to approximate complicated functions. This allows
us to approximate values of complicated functions using only addition, subtraction,
multiplication, and division of real numbers. The nth order Taylor polynomial centered
at x = a of a function f is

Pn(x) = f (a) + f ′(a)(x − a) + f ′′(a)
2!

(x − a)2 + · · · + f (n)(a)
n!

(x − a)n

=

n∑
k=0

f (k)(a)
k!

(x − a)k .

• The Taylor series centered at x = a for a function f is

∞∑
k=0

f (k)(a)
k!

(x − a)k .

• The nth order Taylor polynomial centered at a for f is the nth partial sum of its
Taylor series centered at a. So the nth order Taylor polynomial for a function f is an
approximation to f on the interval where the Taylor series converges; for the values of
x for which the Taylor series converges to f we write

f (x) =
∞∑
k=0

f (k)(a)
k!

(x − a)k .

• The Lagrange Error Bound shows us how to determine the accuracy in using a Taylor
polynomial to approximate a function. More specifically, if Pn(x) is the nth order Taylor
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polynomial for f centered at x = a and if M is an upper bound for
�
f (n+1)(x)� on the

interval [a, c], then
|Pn(c) − f (c)| ≤ M

|c − a|n+1
(n + 1)! .

Exercises

1. In this exercise we investigation the Taylor series of polynomial functions.

(a) Find the 3rd order Taylor polynomial centered at a = 0 for f (x) = x3 − 2x2 +
3x − 1. Does your answer surprise you? Explain.

(b) Without doing any additional computation, find the 4th, 12th, and 100th order
Taylor polynomials (centered at a = 0) for f (x) = x3 − 2x2 + 3x − 1. Why
should you expect this?

(c) Now suppose f (x) is a degree m polynomial. Completely describe the nth
order Taylor polynomial (centered at a = 0) for each n.

2. The examples we have considered in this section have all been for Taylor polynomials
and series centered at 0, but Taylor polynomials and series can be centered at any
value of a. We look at examples of such Taylor polynomials in this exercise.

(a) Let f (x) = sin(x). Find the Taylor polynomials up through order four of f
centered at x = π

2 . Then find the Taylor series for f (x) centered at x = π
2 . Why

should you have expected the result?

(b) Let f (x) = ln(x). Find the Taylor polynomials up through order four of f
centered at x = 1. Then find the Taylor series for f (x) centered at x = 1.

(c) Use your result from (b) to determine which Taylor polynomial will approximate
ln(2) to two decimal places. Explain in detail how you know you have the
desired accuracy.

3. We can use known Taylor series to obtain other Taylor series, and we explore that idea
in this exercise, as a preview of work in the following section.

(a) Calculate the first four derivatives of sin(x2) and hence find the fourth order
Taylor polynomial for sin(x2) centered at a = 0.

(b) Part (a) demonstrates the brute force approach to computing Taylor polynomials
and series. Now we find an easier method that utilizes a known Taylor series.
Recall that the Taylor series centered at 0 for f (x) = sin(x) is

∞∑
k=0

(−1)k x2k+1

(2k + 1)! . (8.24)



8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 517

(i) Substitute x2 for x in the Taylor series (8.24). Write out the first several
terms and compare to your work in part (a). Explain why the substitution
in this problem should give the Taylor series for sin(x2) centered at 0.

(ii) What should we expect the interval of convergence of the series for sin(x2)
to be? Explain in detail.

4. Based on the examples we have seen, we might expect that the Taylor series for a
function f always converges to the values f (x) on its interval of convergence. We

explore that idea in more detail in this exercise. Let f (x) =



e−1/x
2

if x , 0,

0 if x = 0.

(a) Show, using the definition of the derivative, that f ′(0) = 0.

(b) It can be shown that f (n)(0) = 0 for all n ≥ 2. Assuming that this is true, find
the Taylor series for f centered at 0.

(c) What is the interval of convergence of the Taylor series centered at 0 for f ?
Explain. For which values of x the interval of convergence of the Taylor series
does the Taylor series converge to f (x)?


