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8.4 Alternating Series

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What is an alternating series?

• What does it mean for an alternating series to converge?

• Under what conditions does an alternating series converge? Why?

• How well does the nth partial sum of a convergent alternating series approximate
the actual sum of the series? Why?

• What is the difference between absolute convergence and conditional convergence?

Introduction

In our study of series so far, almost every series that we’ve considered has exclusively
nonnegative terms. Of course, it is possible to consider series that have some negative
terms. For instance, if we consider the geometric series
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which has a = 2 and r = −2
3 , we see that not only does every other term alternate in sign,

but also that this series converges to
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.

In Preview Activity 8.4 and our following discussion, we investigate the behavior of similar
series where consecutive terms have opposite signs.

Preview Activity 8.4. Preview Activity 8.3 showed how we can approximate the number
e with linear, quadratic, and other polynomial approximations. We use a similar approach
in this activity to obtain linear and quadratic approximations to ln(2). Along the way,
we encounter a type of series that is different than most of the ones we have seen so far.
Throughout this activity, let f (x) = ln(1 + x).

(a) Find the tangent line to f at x = 0 and use this linearization to approximate ln(2).
That is, find L(x), the tangent line approximation to f (x), and use the fact that
L(1) ≈ f (1) to estimate ln(2).
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(b) The linearization of ln(1 + x) does not provide a very good approximation to
ln(2) since 1 is not that close to 0. To obtain a better approximation, we alter
our approach; instead of using a straight line to approximate ln(2), we use a
quadratic function to account for the concavity of ln(1 + x) for x close to 0. With
the linearization, both the function’s value and slope agree with the linearization’s
value and slope at x = 0. We will now make a quadratic approximation P2(x)
to f (x) = ln(1 + x) centered at x = 0 with the property that P2(0) = f (0),
P′2(0) = f ′(0), and P′′2 (0) = f ′′(0).
(i) Let P2(x) = x − x2

2 . Show that P2(0) = f (0), P′2(0) = f ′(0), and P′′2 (0) =
f ′′(0). Use P2(x) to approximate ln(2) by using the fact that P2(1) ≈ f (1).

(ii) We can continue approximating ln(2) with polynomials of larger degree
whose derivatives agree with those of f at 0. This makes the polynomials
fit the graph of f better for more values of x around 0. For example, let
P3(x) = x − x2

2 +
x3

3 . Show that P3(0) = f (0), P′3(0) = f ′(0), P′′3 (0) = f ′′(0),
and P′′′3 (0) = f ′′′(0). Taking a similar approach to preceding questions, use
P3(x) to approximate ln(2).

(iii) If we used a degree 4 or degree 5 polynomial to approximate ln(1 + x),
what approximations of ln(2) do you think would result? Use the preceding
questions to conjecture a pattern that holds, and state the degree 4 and
degree 5 approximation.

./

Preview Activity 8.4 gives us several approximations to ln(2), the linear approximation
is 1 and the quadratic approximation is 1 − 1

2 =
1
2 . If we continue this process we will

obtain approximations from cubic, quartic (degree 4), quintic (degree 5), and higher degree
polynomials giving us the following approximations to ln(2):

linear 1 1

quadratic 1 − 1
2 0.5

cubic 1 − 1
2 +

1
3 0.83

quartic 1 − 1
2 +

1
3 −

1
4 0.583

quintic 1 − 1
2 +

1
3 −

1
4 +

1
5 0.783

The pattern here shows the fact that the number ln(2) can be approximated by the partial
sums of the infinite series

∞∑
k=1

(−1)k+1 1
k

(8.15)

where the alternating signs are determined by the factor (−1)k+1.
Using computational technology, we find that 0.6881721793 is the sum of the first

100 terms in this series. As a comparison, ln(2) ≈ 0.6931471806. This shows that even
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though the series (8.15) converges to ln(2), it must do so quite slowly, since the sum of
the first 100 terms isn’t particularly close to ln(2). We will investigate the issue of how
quickly an alternating series converges later in this section. Again, note particularly that
the series (8.15) is different from the series we have consider earlier in that some of the
terms are negative. We call such a series an alternating series.

Definition 8.6. An alternating series is a series of the form

∞∑
k=0

(−1)kak,

where ak ≥ 0 for each k .

We have some flexibility in how we write an alternating series; for example, the series

∞∑
k=1

(−1)k+1ak,

whose index starts at k = 1, is also alternating. As we will soon see, there are several very
nice results that hold about alternating series, while alternating series can also demonstrate
some unusual behaivior.

It is important to remember that most of the series tests we have seen in previous
sections apply only to series with nonnegative terms. Thus, alternating series require a
different test. To investigate this idea, we return to the example in Preview Activity 8.4.

Activity 8.16.

Remember that, by definition, a series converges if and only if its corresponding
sequence of partial sums converges.

(a) Complete Table 8.7 by calculating the first few partial sums (to 10 decimal
places) of the alternating series

∞∑
k=1

(−1)k+1 1
k
.

(b) Plot the sequence of partial sums from part (a) in the plane. What do you
notice about this sequence?

C

Activity 8.16 exemplifies the general behavior that any convergent alternating series
will demonstrate. In this example, we see that the partial sums of the alternating harmonic
series oscillate around a fixed number that turns out to be the sum of the series.
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1∑
k=1

(−1)k+1 1
k

=
6∑

k=1

(−1)k+1 1
k

=

2∑
k=1

(−1)k+1 1
k

=
7∑

k=1

(−1)k+1 1
k

=

3∑
k=1

(−1)k+1 1
k

=
8∑

k=1

(−1)k+1 1
k

=

4∑
k=1

(−1)k+1 1
k

=
9∑

k=1

(−1)k+1 1
k

=

5∑
k=1

(−1)k+1 1
k

=
10∑
k=1

(−1)k+1 1
k

=

Table 8.7: Partial sums of the alternating series
∑∞

k=1(−1)k+1 1
k

Recall that if limk→∞ ak , 0, then the series
∑

ak diverges by the Divergence Test.
From this point forward, we will thus only consider alternating series

∞∑
k=1

(−1)k+1ak

in which the sequence ak consists of positive numbers that decrease to 0. For such a series,
the nth partial sum Sn satisfies

Sn =
n∑

k=1

(−1)k+1ak .

Notice that

• S1 = a1

• S2 = a1 − a2, and since a1 > a2 we have

0 < S2 < S1.

• S3 = S2 + a3 and so S2 < S3. But a3 < a2, so S3 < S1. Thus,

0 < S2 < S3 < S1.
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• S4 = S3 − a4 and so S4 < S3. But a4 < a3, so S2 < S4. Thus,

0 < S2 < S4 < S3 < S1.

• S5 = S4 + a5 and so S4 < S5. But a5 < a4, so S5 < S3. Thus,

0 < S2 < S4 < S5 < S3 < S1.

This pattern continues as illustrated in Figure 8.5 (with n odd) so that each partial sum
lies between the previous two partial sums. Note further that the absolute value of the
difference between the (n − 1)st partial sum Sn−1 and the nth partial sum Sn is

|Sn − Sn−1 | = an.

Since the sequence {an} converges to 0, the distance between successive partial sums
becomes as close to zero as we’d like, and thus the sequence of partial sums converges (even
though we don’t know the exact value to which the sequence of partial sums converges).

The preceding discussion has demonstrated the truth of the Alternating Series Test.

an

S1S2 S3S4 S5S6 . . . Sn−1 Sn

Figure 8.5: Partial sums of an alternating series

The Alternating Series Test. Given an alternating series∑
(−1)kak,

if the sequence {ak} of positive terms decreases to 0 as k → ∞, then the alternating
series converges.

Note particularly that if the limit of the sequence {ak} is not 0, then the alternating
series diverges.

Activity 8.17.

Which series converge and which diverge? Justify your answers.

(a)
∞∑
k=1

(−1)k
k2 + 2

(b)
∞∑
k=1

(−1)k+12k
k + 5
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(c)
∞∑
k=2

(−1)k
ln(k)

C

The argument for the Alternating Series Test also provides us with a method to
determine how close the nth partial sum Sn is to the actual sum of a convergent alternating
series. To see how this works, let S be the sum of a convergent alternating series, so

S =
∞∑
k=1

(−1)kak .

Recall that the sequence of partial sums oscillates around the sum S so that

|S − Sn | < |Sn+1 − Sn | = an+1.

Therefore, the value of the term an+1 provides an error estimate for how well the partial
sum Sn approximates the actual sum S. We summarize this fact in the statement of the
Alternating Series Estimation Theorem.

Alternating Series Estimation Theorem. If the alternating series

∞∑
k=1

(−1)k+1ak

converges and has sum S, and

Sn =
n∑

k=1

(−1)k+1ak

is the nth partial sum of the alternating series, then

������

∞∑
k=1

(−1)k+1ak − Sn
������
≤ an+1.

Example 8.1. Let’s determine how well the 100th partial sum S100 of

∞∑
k=1

(−1)k+1
k

approximates the sum of the series.

Solution.
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If we let S be the sum of the series
∑∞

k=1
(−1)k+1

k , then we know that

|S100 − S| < a101.

Now

a101 =
1

101
≈ 0.0099,

so the 100th partial sum is within 0.0099 of the sum of the series. We have discussed the
fact (and will later verify) that

S =
∞∑
k=1

(−1)k+1
k

= ln(2),

and so S ≈ 0.693147 while

S100 =
100∑
k=1

(−1)k+1
k

≈ 0.6881721793.

We see that the actual difference between S and S100 is approximately 0.0049750013,
which is indeed less than 0.0099.

Activity 8.18.

Determine the number of terms it takes to approximate the sum of the convergent
alternating series

∞∑
k=1

(−1)k+1
k4

to within 0.0001.

C

Absolute and Conditional Convergence

A series such as

1 −
1

4
−
1

9
+

1

16
+

1

25
+

1

36
−

1

49
−

1

64
−

1

81
−

1

100
+ · · · (8.16)

whose terms are neither all nonnegative nor alternating is different from any series that we
have considered to date. The behavior of these series can be rather complicated, but there
is an important connection between these arbitrary series that have some negative terms
and series with all nonnegative terms that we illustrate with the next activity.

Activity 8.19.
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(a) Explain why the series

1 −
1

4
−
1

9
+

1

16
+

1

25
+

1

36
−

1

49
−

1

64
−

1

81
−

1

100
+ · · ·

must have a sum that is less than the series

∞∑
k=1

1

k2
.

(b) Explain why the series

1 −
1

4
−
1

9
+

1

16
+

1

25
+

1

36
−

1

49
−

1

64
−

1

81
−

1

100
+ · · ·

must have a sum that is greater than the series

∞∑
k=1

−
1

k2
.

(c) Given that the terms in the series

1 −
1

4
−
1

9
+

1

16
+

1

25
+

1

36
−

1

49
−

1

64
−

1

81
−

1

100
+ · · ·

converge to 0, what do you think the previous two results tell us about the
convergence status of this series?

C

As the example in Activity 8.19 suggests, if we have a series
∑

ak, (some of whose
terms may be negative) such that

∑ |ak | converges, it turns out to always be the case that
the original series,

∑
ak , must also converge. That is, if

∑ |ak | converges, then so must∑
ak .

As we just observed, this is the case for the series (8.16), since the corresponding
series of the absolute values of its terms is the convergent p-series

∑ 1
k2
. At the same

time, there are series like the alternating harmonic series
∑(−1)k+1 1

k that converge, while
the corresponding series of absolute values,

∑ 1
k , diverges. We distinguish between these

behaviors by introducing the following language.

Definition 8.7. Consider a series
∑

ak .

1. The series
∑

ak converges absolutely (or is absolutely convergent) provided that
∑ |ak |

converges.

2. The series
∑

ak converges conditionally (or is conditionally convergent) provided that∑ |ak | diverges and ∑
ak converges.
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In this terminology, the series (8.16) converges absolutely while the alternating harmonic
series is conditionally convergent.

Activity 8.20.

(a) Consider the series
∑

(−1)k ln(k)
k

.

(i) Does this series converge? Explain.

(ii) Does this series converge absolutely? Explain what test you use to deter-
mine your answer.

(b) Consider the series
∑

(−1)k ln(k)
k2

.

(i) Does this series converge? Explain.

(ii) Does this series converge absolutely? Hint: Use the fact that ln(k) < √k
for large values of k and the compare to an appropriate p-series.

C

Conditionally convergent series turn out to be very interesting. If the sequence {an}
decreases to 0, but the series

∑
ak diverges, the conditionally convergent series

∑(−1)kak
is right on the borderline of being a divergent series. As a result, any conditionally
convergent series converges very slowly. Furthermore, some very strange things can
happen with conditionally convergent series, as illustrated in some of the exercises.

Summary of Tests for Convergence of Series

We have discussed several tests for convergence/divergence of series in our sections and
in exercises. We close this section of the text with a summary of all the tests we have
encountered, followed by an activity that challenges you to decide which convergence test
to apply to several different series.

Geometric
Series

The geometric series
∑

ark with ratio r converges
for −1 < r < 1 and diverges for |r | ≥ 1.

The sum of the convergent ge-

ometric series
∞∑
k=0

ark is a
1−r .

Divergence
Test

If the sequence an does not converge to 0, then
the series

∑
ak diverges.

This is the first test to ap-
ply because the conclusion
is simple. However, if
limn→∞ an = 0, no conclu-
sion can be drawn.
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Integral Test
Let f be a positive, decreasing function on an
interval [c,∞] and let ak = f (k) for each positive
integer k ≥ c.

• If
∫ ∞
c

f (t) dt converges, then
∑

ak con-
verges.

• If
∫ ∞
c

f (t) dt diverges, then
∑

ak diverges.

Use this test when f (x) is easy
to integrate.

Direct Com-
parision Test
(see Ex 4 in
Section 8.3)

Let 0 ≤ ak ≤ bk for each positive integer k .

• If
∑

bk converges, then
∑

ak converges.

• If
∑

ak diverges, then
∑

bk diverges.

Use this test when you have
a series with known behavior
that you can compare to – this
test can be difficult to apply.

Limit Com-
parison Test

Let an and bn be sequences of positive terms. If

lim
k→∞

ak
bk
= L

for some positive finite number L, then the two
series

∑
ak and

∑
bk either both converge or both

diverge.

Easier to apply in general
than the comparison test, but
you must have a series with
known behavior to compare.
Useful to apply to series of ra-
tional functions.

Ratio Test
Let ak , 0 for each k and suppose

lim
k→∞

|ak+1 |
|ak | = r .

• If r < 1, then the series
∑

ak converges
absolutely.

• If r > 1, then the series
∑

ak diverges.

• If r = 1, then test is inconclusive.

This test is useful when a
series involves factorials and
powers.

Root Test (see
Exercise 2 in
Section 8.3)

Let ak ≥ 0 for each k and suppose

lim
k→∞

k
√

ak = r .

• If r < 1, then the series
∑

ak converges.

• If r > 1, then the series
∑

ak diverges.

• If r = 1, then test is inconclusive.

In general, the Ratio Test can
usually be used in place of the
Root Test. However, the Root
Test can be quick to use when
ak involves kth powers.

Alternating
Series Test

If an is a positive, decreasing sequence so
that lim

n→∞
an = 0, then the alternating series∑(−1)k+1ak converges.

This test applies only to alter-
nating series – we assume that
the terms an are all positive
and that the sequence {an} is
decreasing.

Alternating
Series Es-
timation
Theorem

Let Sn =
n∑

k=1

(−1)k+1ak be the nth partial sum

of the alternating series
∞∑
k=1

(−1)k+1ak . Assume

an > 0 for each positive integer n, the sequence
an decreases to 0 and lim

n→∞
Sn = S. Then it

follows that |S − Sn | < an+1.

This bound can be used to de-
termine the accuracy of the
partial sum Sn as an approx-
imation of the sum of a con-
vergent alternating series.
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Activity 8.21.

For (a)-(j), use appropriate tests to determine the convergence or divergence of the
following series. Throughout, if a series is a convergent geometric series, find its sum.

(a)
∞∑
k=3

2
√

k − 2

(b)
∞∑
k=1

k
1 + 2k

(c)
∞∑
k=0

2k2 + 1
k3 + k + 1

(d)
∞∑
k=0

100k

k!

(e)
∞∑
k=1

2k

5k

(f)
∞∑
k=1

k3 − 1
k5 + 1

(g)
∞∑
k=2

3k−1

7k

(h)
∞∑
k=2

1

kk

(i)
∞∑
k=1

(−1)k+1
√

k + 1

(j)
∞∑
k=2

1

k ln(k)
(k) Determine a value of n so that the nth partial sum Sn of the alternating series

∞∑
n=2

(−1)n
ln(n) approximates the sum to within 0.001.

C
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Summary

In this section, we encountered the following important ideas:

• An alternating series is a series whose terms alternate in sign. In other words, an
alternating series is a series of the form∑

(−1)kak

where ak is a positive real number for each k .

• An alternating series
∑∞

k=1(−1)kak converges if and only if its sequence {Sn} of partial
sums converges, where

Sn =
n∑

k=1

(−1)kak .

• The sequence of partial sums of a convergent alternating series oscillates around and
converge to the sum of the series if the sequence of nth terms converges to 0. That is
why the Alternating Series Test shows that the alternating series

∑∞
k=1(−1)kak converges

whenever the sequence {an} of nth terms decreases to 0.

• The difference between the n − 1st partial sum Sn−1 and the nth partial sum Sn of a
convergent alternating series

∑∞
k=1(−1)kak is |Sn − Sn−1 | = an. Since the partial sums

oscillate around the sum S of the series, it follows that

|S − Sn | < an.

So the nth partial sum of a convergent alternating series
∑∞

k=1(−1)kak approximates
the actual sum of the series to within an.

Exercises

1. Conditionally convergent series converge very slowly. As an example, consider the
famous formula6

π

4
= 1 −

1

3
+
1

5
−
1

7
+ · · · =

∞∑
k=0

(−1)k 1

2k + 1
. (8.17)

In theory, the partial sums of this series could be used to approximate π.

(a) Show that the series in (8.17) converges conditionally.

(b) Let Sn be the nth partial sum of the series in (8.17). Calculate the error in

6We will derive this formula in upcoming work.
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approximating π
4 with S100 and explain why this is not a very good approxima-

tion.

(c) Determine the number of terms it would take in the series (8.17) to approximate
π
4 to 10 decimal places. (The fact that it takes such a large number of terms
to obtain even a modest degree of accuracy is why we say that conditionally
convergent series converge very slowly.)

2. We have shown that if
∑(−1)k+1ak is a convergent alternating series, then the sum S

of the series lies between any two consecutive partial sums Sn. This suggests that the
average Sn+Sn+1

2 is a better approximation to S than is Sn.

(a) Show that Sn+Sn+1

2 = Sn + 1
2 (−1)n+2an+1.

(b) Use this revised approximation in (a) with n = 20 to approximate ln(2) given
that

ln(2) =
∞∑
k=1

(−1)k+1 1
k
.

Compare this to the approximation using just S20. For your convenience,
S20 = 155685007

232792560 .

3. In this exercise, we examine one of the conditions of the Alternating Series Test.
Consider the alternating series

1 − 1 +
1

2
−
1

4
+
1

3
−
1

9
+
1

4
−

1

16
+ · · · ,

where the terms are selected alternately from the sequences
�
1
n

	
and

{
− 1

n2

}
.

(a) Explain why the nth term of the given series converges to 0 as n goes to infinity.

(b) Rewrite the given series by grouping terms in the following manner:

(1 − 1) +
(1
2
−
1

4

)
+

(1
3
−
1

9

)
+

(1
4
−

1

16

)
+ · · · .

Use this regrouping to determine if the series converges or diverges.

(c) Explain why the condition that the sequence {an} decreases to a limit of 0 is
included in the Alternating Series Test.

4. Conditionally convergent series exhibit interesting and unexpected behavior. In this ex-

ercise we examine the conditionally convergent alternating harmonic series
∞∑
k=1

(−1)k+1
k

and discover that addition is not commutative for conditionally convergent series. We
will also encounter Riemann’s Theorem concerning rearrangements of conditionally
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convergent series. Before we begin, we remind ourselves that

∞∑
k=1

(−1)k+1
k

= ln(2),

a fact which will be verified in a later section.

(a) First we make a quick analysis of the positive and negative terms of the
alternating harmonic series.

(i) Show that the series
∞∑
k=1

1

2k
diverges.

(ii) Show that the series
∞∑
k=1

1

2k + 1
diverges.

(iii) Based on the results of the previous parts of this exercise, what can we

say about the sums
∞∑

k=C

1

2k
and

∞∑
k=C

1

2k + 1
for any positive integer C? Be

specific in your explanation.

(b) Recall addition of real numbers is commutative; that is

a + b = b + a

for any real numbers a and b. This property is valid for any sum of finitely
many terms, but does this property extend when we add infinitely many terms
together?

The answer is no, and something even more odd happens. Riemann’s The-
orem (after the nineteenth-century mathematician Georg Friedrich Bernhard
Riemann) states that a conditionally convergent series can be rearranged to
converge to any prescribed sum. More specifically, this means that if we choose
any real number S, we can rearrange the terms of the alternating harmonic

series
∞∑
k=1

(−1)k+1
k

so that the sum is S. To understand how Riemann’s The-

orem works, let’s assume for the moment that the number S we want our
rearrangement to converge to is positive. Our job is to find a way to order the
sum of terms of the alternating harmonic series to converge to S.

(i) Explain how we know that, regardless of the value of S, we can find a
partial sum P1

P1 =

n1∑
k=1

1

2k + 1
= 1 +

1

3
+
1

5
+ · · · +

1

2n1 + 1

of the positive terms of the alternating harmonic series that equals or
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exceeds S. Let
S1 = P1.

(ii) Explain how we know that, regardless of the value of S1, we can find a
partial sum N1

N1 = −

m1∑
k=1

1

2k
= −

1

2
−
1

4
−
1

6
− · · · −

1

2m1

so that
S2 = S1 + N1 ≤ S.

(iii) Explain how we know that, regardless of the value of S2, we can find a
partial sum P2

P2 =

n2∑
k=n1+1

1

2k + 1
=

1

2(n1 + 1) + 1 +
1

2(n1 + 2) + 1 + · · · +
1

2n2 + 1

of the remaining positive terms of the alternating harmonic series so that

S3 = S2 + P2 ≥ S.

(iv) Explain how we know that, regardless of the value of S3, we can find a
partial sum

N2 = −

m2∑
k=m1+1

1

2k
= −

1

2(m1 + 1) −
1

2(m1 + 2) − · · · −
1

2m2

of the remaining negative terms of the alternating harmonic series so that

S4 = S3 + N2 ≤ S.

(v) Explain why we can continue this process indefinitely and find a sequence
{Sn} whose terms are partial sums of a rearrangement of the terms in the
alternating harmonic series so that lim

n→∞
Sn = S.


