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_________________________ 

In the last lesson, you 
encountered several 
situations where you naturally considered an infinite sum of numbers called a 
geometric series. For example, by writing 
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12

100
12

100
1

100
12

100
1

100
⋯ 

as a geometric series, you found a way to write the repeating decimal expansion of N 

as a single fraction: 𝑁 . There are many other situations in mathematics where 

infinite sums of numbers arise, but often these are not geometric. In this section, you 
begin exploring these other types of infinite sums. Investigation 1 provides a context 
in which you see how one such sum is related to the famous number e. 

Investigation 1: Have you ever wondered how your calculator can produce a 
numeric approximation for complicated numbers like e, π or ln 2 ? After all, the 
only operations a calculator can really perform are addition, subtraction, 
multiplication, and division, the operations that make up polynomials. This 
investigation provides the first steps in understanding how this process works. 
Throughout the investigation, let 𝑓 𝑥 𝑒  . 

a  Find the tangent line to f at x  0 and use this linearization to approximate e. That 
is, find a formula 𝐿 𝑥  for the tangent line, and compute 𝐿 1 , since 𝐿 1 𝑓 1 𝑒 

b  The linearization of 𝑒   does not provide a good approximation to e since 1 is not 
very close to 0.  To obtain a better approximation, alter your approach. Instead of 
using a straight line to approximate e, put an appropriate bend in your estimating 
function to make it better fit the graph of 𝑒  for x close to 0. With the linearization, 
you had both f x  and f ‘ x  share the same value as the linearization at x  0. You 
will now use a quadratic approximation 𝑃 𝑥  to 𝑓 𝑥 𝑒  centered at x  0 which 
has the property that 𝑃 0 𝑓 0 , 𝑃 ′′ 0 𝑓′′ 0  and 𝑃 ′′′ 0 𝑓′′′ 0 . 

i. Let 𝑃 𝑥 1 𝑥 . Show that 𝑃 0 𝑓 0 , 𝑃 ′′ 0 𝑓′′ 0  and 
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𝑃 ′′′ 0 𝑓′′′ 0 . Then, use 𝑃 𝑥  to approximate e by observing that 𝑃 1
𝑓 1 . 

ii. You can continue approximating e with polynomials of larger degree whose 
higher derivatives agree with those of f at 0. This turns out to make the 
polynomials fit the graph of f better for more values of x around 0. For 

example, let 𝑃 𝑥 1 𝑥 .  Show that 3 0 𝑓 0 , 𝑃 ′′ 0

𝑓′′ 0  ,  𝑃 ′′′ 0 𝑓′′′ 0 , and 𝑃 ′′′′ 0 𝑓′′′′ 0 . Use 𝑃 𝑥  to approximate e in 
a way similar to how you did so with 𝑃 𝑥  above. 

 

Investigation 1 shows that an approximation to e using a linear polynomial is 2, an 
approximation to e using a quadratic polynomial is 2.5, and an approximation using 
a cubic polynomial is 2.6667. As you will see later, if you continue this process you 
can obtain approximations from quartic degree 4 , quintic degree 5 , and higher 
degree polynomials giving you the following approximations to e: 

 

You should see an interesting pattern here. The number e is being approximated by 
the sum 

1 1
1
2

1
6

1
24

1
120

⋯
1
𝑛!

 . 

for increasing values of n. And just as you did with Riemann sums, you can use the 
summation notation as a shorthand1 for writing the sum, so that 

𝑒 1 1
1
2

1
6

1
24

1
120

⋯
1
𝑛!

1
𝑘!

 . 

                                                            
1 Note that 0! appears in this equation. By definition, 0!  1. 
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You can calculate this sum using as large an n as you want, and the larger n is the 
more accurate the approximation this formula becomes. Ultimately, this argument 
shows that you can write the number e as the infinite sum 

𝑒
1
𝑘!

 . 

This sum is an example of a series or an infinite series . Note that this series is the 

sum of the terms of the infinite  sequence 
!

. In general, use the following notation and 

terminology. 

 

 

 

 

 

 

You will normally use summation notation to identify a series. If the series adds the 
entries of a sequence 𝑎

 
𝑛 1, then you will write the series as 

𝑎  ,

 

 

or 

𝑎  , 

Note: each of these notations is simply shorthand for the infinite sum 𝑎 𝑎
⋯ 𝑎 ⋯ 

 

Is it even possible to sum an infinite list of numbers? This question is one whose 
answer shouldn’t come as a surprise. After all, you have used the definite integral to 
add up continuous infinite  collections of numbers, so summing the entries of a 
sequence might be even easier. Moreover, you have already examined the special 

Definition: An infinite series of real numbers is the sum of the 
entries in an infinite sequence of real numbers. In other words, 
an infinite series is sum of the form 

𝑎 𝑎 ⋯ 𝑎 ⋯ 𝑎  , 

Where 𝑎 𝑎 … are real numbers. 
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case of geometric series in the previous section. The next investigation provides 
some more insight into how you make sense of the process of summing an infinite 
list of numbers. 

 

Investigation 2: Consider the series 

1
𝑘

 

While it is physically impossible to add an infinite collection of numbers, you can, of 
course, add any finite collection of them. In what follows, you investigate how 
understanding how to find the nth partial sum that is, the sum of the first n terms  
enables you to make sense of the infinite sum. 

a  Sum the first two numbers in this series. That is, find a numeric value for 

1
𝑘

 

 

b  Next, add the first three numbers in the series. 

c  Continue adding terms in this series to complete the table below. Carry each sum 
to at least 8 decimal places. 

1
𝑘

 
 
 

 1
𝑘

 
 
 

1
𝑘

 
 
 

 1
𝑘

 
 
 

1
𝑘

 
 
 

 1
𝑘

 
 
 

1
𝑘

 
 
 

 1
𝑘

 
 
 

1
𝑘

 
 
 

 1
𝑘
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d  The sums in the table in c  form a sequence whose nth term is 𝑆 ∑  

Based on your calculations in the table, do you think the sequence 𝑆  converges or 
diverges? Explain. How do you think this sequence 𝑆  is related to the series 

∑  ? 

 

 Investigation 2 illustrates how you define the sum of an infinite series. You can add 
up the first n terms of the series to obtain a new sequence of numbers called the 
sequence of partial sums . If that sequence converges, the corresponding infinite 
series is said to converge, and you can say that you can find the sum of the series. 

 

 

 

 

In other words, the nth partial sum 𝑆  of a series is the sum of the first n terms in the 
series, or 

𝑆 𝑎 𝑎 ⋯ 𝑎 ⋯ 

Now, investigate the behavior of a given series by examining the sequence 

𝑆 , 𝑆 , … , 𝑆 , … 

of its partial sums. If the sequence of partial sums converges to some finite number, 
then you say that the corresponding series converges. Otherwise, you say the series 
diverges. From your work in Investigation 2, the series 

1
𝑘

 

appears to converge to some number near 1.54977.  

 

Definition: The nth partial sum of the series  ∑ 𝑎  , is the finite 
sum  𝑆 ∑ 𝑎  . 
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Formalize the concept of convergence and divergence of an infinite series in the 
following definition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The early terms in a series do not contribute to whether or not the series converges 
or diverges. Rather, the convergence or divergence of a series 

𝑎   

is determined by what happens to the terms 𝑎   for very large values of k. To see 
why, suppose that m is some constant larger than 1. Then 

𝑎  𝑎 𝑎 ⋯ 𝑎 𝑎   

 

Definition: The infinite series  

𝑎  , 

converges or is convergent  if the sequence 𝑆  of partial sums 
converges, where 

𝑆 𝑎  . 

If lim
→

𝑆 𝑆, then you call S the sum of the series ∑ 𝑎  ,  

That is, 

𝑎 lim
→

𝑆 𝑆 

If the sequence of partial sums does not converge, then the series 
diverges or is divergent . 
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Since 𝑎 𝑎 ⋯ 𝑎  is a finite number, the series ∑ 𝑎   a will converge if and 
only if the series ∑ 𝑎   converges. Because the starting index of the series 
doesn’t affect whether the series converges or diverges, you will often just write 

 

𝑎  

 

 

 

when you are interested in questions of convergence/divergence and not 
necessarily the exact sum of a series. 

In the last lesson, you encountered the special family of infinite geometric series 
whose convergence or divergence you determined. Recall that a geometric series is a 
special series of the form ∑ 𝑎  where a and r  are real numbers and 𝑟 1 . You 
found that the nth partial sum Sn of a geometric series is given by the convenient 
formula 

𝑆
1 𝑟
1 𝑟

 

and thus a geometric series converges if |r|  1. Geometric series diverge for all 
other values of r. While you have completely determined the convergence or 
divergence of geometric series, it is generally a difficult question to determine if a 
given nongeometric series converges or diverges. There are several tests you can 
use that you will consider in the following sections. 
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II. The Divergence Test 

The first question you ask about any infinite series is usually “Does the series 
converge or diverge?” There is a straightforward way to check that certain series 
diverge; you explore this test in the next investigation. 

Investigation 3: If the series  ∑ 𝑎  
 
  converges, then an important result necessarily 

follows regarding the sequence 𝑎 . This investigation explores this result. 

Assume that the series ∑ 𝑎   converges and has sum equal to L. 

 

a  What is the nth partial sum 𝑆   of the series ∑ 𝑎  ? 

 

b  What is the n - 1 st partial sum 𝑆   of the series ∑ 𝑎  ? 

 

c  What is the difference between the nth partial sum and the n - 1 st partial sum of 
the series ∑ 𝑎  ? 

 

d  Since  you  are  assuming  that ∑ 𝑎  𝐿,  what  does  that  tell  you  about 

lim
→

𝑆 ? Why? What does that tell you about lim
→

𝑆 ? Why? 

 

e  Combine the results of the previous two parts of this investigation to determine 

lim
→

𝑎 lim
→

𝑆 𝑆 . 

 

The result of Investigation 3 is the following important conditional statement: 

If the series ∑ 𝑎  converges, then the sequence 𝑎  of kth terms converges 

to 0. 
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It is logically equivalent to say that if the sequence a of n terms does not converge to 
0, then the series ∑ 𝑎   cannot converge. This statement is called the Divergence 
Test. 

 

 

 

 

Investigation 4: Determine if the Divergence Test applies to the following series. If 
the test does not apply, explain why. If the test does apply, what does it tell you 
about the series? 

a       ∑   

b       ∑ 1   

c       ∑   

 

Note: be very careful with the Divergence Test. This test only tells you what happens 
to a series if the terms of the corresponding sequence do not converge to 0. If the 
sequence of the terms of the series does converge to 0, the Divergence Test does not 
apply: indeed, as you will soon see, a series whose terms go to zero may either 
converge or diverge. 

 

 

III. The Integral Test 

The Divergence Test settles the questions of divergence or convergence of series 
∑ 𝑎 

  in which lim
→

𝑎 0. Determining the convergence or divergence of series ∑ 𝑎 
  

in which lim
→

𝑎 0 turns out to be more complicated. Often, you have to investigate 

the sequence of partial sums or apply some other technique. 

The Divergence Test: If lim
→

𝑎 0 , then the series ∑ 𝑎  ,
 
  diverges. 
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As an example, consider the harmonic series2 

1
𝑘

 

The table below shows some partial sums of this series. 

 

This information doesn’t seem to be enough to tell you if the series  

∑   converges or diverges. The partial sums could eventually level off to some 

fixed number or continue to grow without bound. Even if you look at larger partial 

sums, such as ∑  7.485470861, the result doesn’t particularly sway you one 

way or another.  

The Integral Test is one way to determine whether or not the harmonic series 
converges, and you explore this further in the next investigation. 

 

 

                                                            
2 This series is called harmonic because each term in the series after the first is the harmonic 
mean of the term before it and the term after it. The harmonic mean of two numbers a and b 

is . See “What’s Harmonic about the Harmonic Series", by David E. Kullman in the 

College Mathematics Journal, Vol. 32, No. 3 May, 2001 , 201-203  for an interesting 
discussion of the harmonic mean. 
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Investigation 5: Consider the harmonic series ∑ . Recall that the harmonic series 

will converge if its sequence of partial sums converges.  

The nth partial sum 𝑆  of the series ∑  is 

𝑆
1
𝑘

 

1
1
2

1
3

⋯
1
𝑛

 

1 1 1
1
2

1
1
3

⋯ 1
1
𝑛

 

Through this last expression for 𝑆 , you can visualize this partial sum as a sum of 
areas of rectangles with heights 1 and bases of length 1, as shown below, which uses 
the 9th partial sum.  

 

The graph of the continuous function f defined by 𝑓 𝑥  is overlaid on this plot. 

a  Explain how this picture represents a particular Riemann sum. 

b  What is the definite integral that corresponds to the Riemann sum you considered 
in a ? 

c  Which is larger, the definite integral in b , or the corresponding partial sum 𝑆  of 
the series? Why? 

d  If instead of considering the 9th partial sum, you consider the nth  partial sum, 
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and you let n  go to infinity, you can then compare the series ∑   to the improper 

integral  𝑑𝑥. Which of these quantities is larger? Why? 

e  Does the improper integral   converge or diverge? What does that result, 

together with your work in d , tell you about the series ∑  ? 

 

The ideas from Investigation 5 hold more generally. Suppose that f is a continuous 
decreasing function and that 𝑎 𝑓 𝑥 for each value of k. Consider the 

corresponding series ∑  . The partial sum 

𝑆 𝑎  

can always be viewed as a left-hand Riemann sum of 𝑓 𝑥  using rectangles with 
heights given by the values 𝑎  and bases of length 1. A representative picture is 
shown below left.  

 

Since f is a decreasing function, you have that   

𝑆 𝑓 𝑥 𝑑𝑥 

Taking limits as n goes to infinity shows that 

𝑎 𝑓 𝑥 𝑑𝑥 

Therefore, if the improper integral 𝑓 𝑥 𝑑𝑥 diverges, so does the series ∑ . 
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Wat’s more, if you look at the right-hand Riemann sums of f on 1, n  as shown above 
right, you see that 

𝑓 𝑥 𝑑𝑥 𝑎  

So if 𝑓 𝑥 𝑑𝑥  converges, then so does ∑ , which also means that the series 

∑   converges. The preceding discussion demonstrates the truth of the Integral 

Test. 

 

 

 

 

 

 

 

Note that the Integral Test compares a given infinite series to a natural, 
corresponding improper integral and basically says that the infinite series and 
corresponding improper integral both have the same convergence status. In the next 
investigation, you will apply the Integral Test to determine the convergence or 
divergence of a class of important series. 

 

Investigation 6: The series ∑  are special series called p-series. You have 

already seen that the p-series with p  1 the harmonic series  diverges. You 
investigate the behavior of other p-series in this investigation. 

a  Evaluate the improper integral 𝑑𝑥. Does the series ∑  converge or 

diverge? Explain. 

 

The Integral Test: Let f be a real valued function and assume f is 
decreasing and positive for all x larger than some number c.  
Let 𝑎 𝑓 𝑥  for each positive integer k. 

1. If the improper integral 𝑓 𝑥 𝑑𝑥 converges, then the series 

∑ 𝑎  converges. 

2. If the improper integral 𝑓 𝑥 𝑑𝑥 diverges, then the series 

∑ 𝑎  diverges. 
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b  Evaluate the improper integral 𝑑𝑥 where p  1. For which values of p can 

you conclude that the series ∑  converges? 

c  Evaluate the improper integral 𝑑𝑥 where p  1. What does this tell you 

about the corresponding p-series ∑  ? 

d  Summarize your work in this investigation by completing the following 
statement. 

The p-series  ∑    converges if and only if ___________________________. 

 

 

IV. The Limit Comparison Test 

The Integral Test allows you to determine the convergence of an entire family of 
series: the p-series. However, you have seen that it is, in general, difficult to integrate 
functions, so the Integral Test is not one that you can use all of the time. In fact, even 

for a relatively simple series like ∑  , the Integral Test is not an option. In this 

section you will develop a test that you can use to apply to series of rational 
functions like this by comparing their behavior to the behavior of p-series. 

Investigation 7: Consider the series ∑ . Since the convergence or divergence of a 

series only depends on the behavior of the series for large values of k, you might 
examine the terms of this series more closely as k gets large. 

a  By computing the value of  for k  100 and k  1000, explain why the 

terms  are essentially  when k is large. 

 

b  Formalize your observations in a  a bit more. Let 𝑎  and 𝑏  . 

Calculate lim
→

. What does the value of the limit tell you about 𝑎  and 𝑏  for 

large values of k? Compare your response from part a . 

 

c  Does the series ∑  converge or diverge? Why? What do you think that tells 
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you about the convergence or divergence of the series ∑ ? Explain. 

Investigation 7 illustrates how you can compare one series with positive terms to 
another whose behavior that is, whether the series converges or diverges  you 
know. More generally, suppose you have two series Σ𝑎  and Σ𝑏 with positive terms 
and you know the behavior of the series Σ𝑎 . Recall that the convergence or 
divergence of a series depends only on what happens to the terms of the series for 
large values of k, so if you know that 𝑎  and 𝑏  are essentially proportional to each 
other for large k, then the two series Σ𝑎  and Σ𝑏  should behave the same way. In 
other words, if there is a positive finite constant c such that 

lim
→

𝑎
𝑏

𝑐, 

then 𝑏 𝑐𝑎  for large values of k. So 

Σ𝑏 Σ𝑐𝑎 𝑐Σ𝑎 . 

Since multiplying by a nonzero constant does not affect the convergence or 
divergence of a series, it follows that the series Σ𝑎  and Σ𝑏  either both converge or 
both diverge. The formal statement of this fact is called the Limit Comparison Test. 

 

 

 

 

 

 

In essence, the Limit Comparison Test shows that if you have a series ∑  of 

rational functions where p k  is a polynomial of degree m and q k  a polynomial of 

degree l, then the series ∑  will behave like the series ∑ . So this test allows you 

to quickly and easily determine the convergence or divergence of series whose 
summands are rational functions. 

 

 

The Limit Comparison Test: Let Σ𝑎  and Σ𝑏  be series with positive 
terms. If  

lim
→

𝑎
𝑏

𝑐, 

For some positive finite  term, then Σ𝑎  and Σ𝑏  either converge 
or diverge. 
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Investigation 8: Use the Limit Comparison Test to determine the convergence or 
divergence of the series 

∑  . 

by comparing it to the series ∑ . 

 

 

V. The Ratio Test 

The Limit Comparison Test works well if you can find a series with known behavior 
to compare. But such series are not always easy to find. In this section you will 
examine a test that allows you to examine the behavior of a series by comparing it to 
a geometric series, without knowing in advance which geometric series you need. 

 

 

 

 

Investigation 9: 

Consider the series defined by 

2
3 𝑘

 

This series is not a geometric series, but this investigation will illustrate how you 
might compare this series to a geometric one. Recall that a series 𝑎  is geometric if 

the ratio  is always the same. For the series above, note that 𝑎 k 

a  To see if ∑  is comparable to a geometric series, you analyze the ratios of 

successive terms in the series. Complete the Table below, listing your calculations to 
at least 8 decimal places. 

 



4.3 Series of Real Numbers Page 17 
 

k 𝑎 1
𝑎

 

5  
10  
20  
21  
22  
23  
24  
25  

 

b  Based on your calculations in the Table, what can you say about the ratio   if k 

is large? 

c  Do you agree or disagree with the statement: “the series ∑  is approximately 

geometric when k is large”? If not, why not? If so, do you think the series ∑  

converges or diverges? Explain. 

 

 

    

 

 

 

 

 

 

Note well: The Ratio Test takes a given series and looks at the limit of the ratio of 
consecutive terms; in so doing, the test is essentially asking, “is this series 
approximately geometric?” If the series can be thought of as essentially geometric, 
the test use the limiting common ratio to determine if the given series converges. 

 You have now encountered several tests for determining convergence or divergence 
of series. The Divergence Test can be used to show that a series diverges, but never 

The Ratio Test: Let ∑ 𝑎  be an infinite series. Suppose 

lim
→

|𝑎 |
|𝑎 |

 

1. If 0 𝑟 1, then the series ∑ 𝑎  converges. 

2. If 1  r, then the series ∑ 𝑎  diverges. 

3. If r  1, then the test is inconclusive. 
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to prove that a series converges. You used the Integral Test to determine the 
convergence status of an entire class of series, the p-series. The Limit Comparison 
Test works well for series that involve rational functions and which can therefore by 
compared to p-series. Finally, the Ratio Test allows you to compare your series to a 
geometric series; it is particularly useful for series that involve nth powers and 
factorials. Two other tests, the Direct Comparison Test and the Root Test, are 
discussed in the lesson. Now it is time for some practice. 

 

 

VI. Exercises 

1. Determine whether each of the following series converges or diverges. Explicitly 
state which test you use. 

a   ∑  

b   ∑  

c   ∑
!

 

d   ∑  

 

2. In this exercise you investigate the sequence 
!

 for any constant b. 

a  Use the Ratio Test to determine if the series ∑
!

 converges or diverges. 

b  Now apply the Ratio Test to determine if the series ∑
!
 converges for any 

constant b. 

c  Use your result from b  to decide whether the sequence of 
!

  converges 

or diverges. If the sequence 
!

 converges, to what does it converge? Explain 

your reasoning. 
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3. There is a test for convergence similar to the Ratio Test called the Root Test. 
Suppose you have a series ∑ 𝑎  of positive terms so that 𝑎 → 0 as 𝑎 → 0. 

a  Assume 

𝑎 → 𝑟 

as n goes to infinity. Explain why this tells you that 𝑎 𝑟  for large values of n. 

b  Using the result of part a , explain why ∑ 𝑎  looks like a geometric series when n 
is big. What is the ratio of the geometric series to which ∑ 𝑎   is comparable? 

c  Use what you know about geometric series to determine that values of r so that   
∑ 𝑎   converges if 𝑎 → 𝑟 as 𝑛 → ∞. 

 

 

4. The associative and distributive laws of addition allow you to add finite sums in 
any order you want. That is, if ∑ 𝑎  and ∑ 𝑏  are finite sums of real numbers, 
then 

 

However, you do need to be careful extending rules like this to infinite series. 

a  Let 𝑎 1   and 𝑏 1 for each nonnegative integer n. 

i  Explain why the series ∑ 𝑎  and ∑ 𝑏   both diverge. 

ii  Explain why the series ∑ 𝑎 𝑏  converges. 

iii  Explain why 

 

This shows that it is possible to have two divergent series ∑ 𝑎  and ∑ 𝑏  
but yet have the series ∑ 𝑎 𝑏   converge. 
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b  While part a  shows that you cannot add series term by term in general, 
you can under reasonable conditions. The problem in part a  is that you tried 
to add divergent series. In this exercise you will show that if a and b are 
convergent series, then ∑ 𝑎 𝑏   

  is a convergent series and 

 

 

i  Let An  and Bn  be the nth  partial sums of the series  ∑ 𝑎  and 
∑ 𝑏 , respectively. Explain why 

 

ii  Use the previous result and properties of limits to show that 

 

Note that the starting point of the sum is irrelevant in this problem, so it doesn’t 
matter where you begin the sum.  

 

c  Use the prior result to find the sum of the series ∑  

 

5. In the Limit Comparison Test you compared the behavior of a series to one whose 
behavior you know. In that test you use the limit of the ratio of corresponding terms 
of the series to determine if the comparison is valid. In this exercise you see how you 
can compare two series directly, term by term, without using a limit of sequence. 
First you consider an example. 

a  Consider the series 

1
𝑘

      and   
1

𝑘 𝑘
  

You know that the series ∑  is a p-series with p   2    1  and so ∑    
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converges. In this part of the exercise you will see how to use information about ∑    

to determine information about ∑  . Let 𝑎   and 𝑏 . 

 

i  Let 𝑆  be the nth partial sum of ∑   and 𝑇  be the nth partial sum of ∑  . 

Which is larger, S1 or T1? Why? 

ii  Recall that 

𝑆 𝑆 𝑎      and     𝑇 𝑇 𝑏  

Which is larger,  𝑎  or 𝑏 ? Based on that answer, which is larger, 𝑆  or 𝑇 ? 

iii  Recall that 

𝑆 𝑆 𝑎      and     𝑇 𝑇 𝑏  

Which is larger, 𝑎  or 𝑏 ? Based on that answer, which is larger, 𝑆  or 𝑇 ? 

 

iv  Which is larger, 𝑎  or 𝑏 ? Explain. Based on that answer, which is larger, 

𝑆  or 𝑇 ? 

 

v  Based on your response to the previous part of this exercise, what 

relation- ship do you expect there to be between ∑    and  ∑  ? Do you 

expect ∑  to converge or diverge?  Why? 

  

b  The example in the previous part of this exercise illustrates a more general result. 
Explain why the Direct Comparison Test, stated here, works. 
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VII. Formative Assessment – Khan Academy 
 
Complete the following online practice exercises in the Sequences and Series unit of Khan 
Academy’s AP Calculus BC course: 

  https://www.khanacademy.org/math/ap-calculus-bc/series-bc/infinite-geo-series-
bc/e/geometric-series-of-constants  
 

 
 

The Direct Comparison Test: If 

0 𝑏 𝑎  

For every k, then 

0 𝑏 𝑎  

1. If  ∑ 𝑎  converges, then ∑ 𝑏  converges. 

2. If  ∑ 𝑎  diverges, then ∑ 𝑏  diverges. 


