
4.1 All in a Row 
(BC) 
 

Introduction to 
Series and 
Sequences 
_______________________ 
 
You encounter sequences every day. Your monthly rent payments, the annual 
interest you earn on investments, a list of your car’s miles per gallon every time you 
fill up; all are examples of sequences. Other sequences with which you may be 
familiar include the Fibonacci sequence 

1, 1, 2, 3, 5, 8, . . . 

in which each entry is the sum of the two preceding entries and the triangular 
numbers 

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, . . . 
 

which are numbers that correspond to the number of 
vertices seen in the triangles at left.  

 

Sequences of integers are of such interest to mathematicians and others that they 
have a journal1 devoted to them and an on-line encyclopedia2 that catalogs a huge 
number of integer sequences and their connections. Sequences are also used in 
digital recordings and digital images. 

To this point, most of your studies in calculus have dealt with continuous 
information (e.g., continuous functions). The major difference you will see now is 
that sequences model discrete instead of continuous information. You will study 
ways to represent and work with discrete information in this chapter as you 
investigate sequences and series, and ultimately see key connections between the 
discrete and continuous. 

                                                           
1 The Journal of Integer Sequences at http://www.cs.uwaterloo.ca/journals/JIS/  

2 The On-Line Encyclopedia of Integer Sequences at http://oeis.org/  

http://www.cs.uwaterloo.ca/journals/JIS/
http://oeis.org/
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Investigation 1: Suppose you receive $5000 through an inheritance. You decide to 
invest this money into a fund that pays 8% annually, compounded monthly. That 
means that each month your investment earns 0.08

12
∙ 𝑃𝑃 additional dollars, where P is 

your principal balance at the start of the month. So, in the first month your 
investment earns 

5000 ∙
0.08
12

 

or $33.33. If you reinvest this money, you will then have $5033.33 in your account at 
the end of the first month. From this point on, assume that you reinvest all of the 
interest you earn. 

a) How much interest will you earn in the second month? How much money will you 
have in your account at the end of the second month? 

b) Complete the table below to determine the interest earned and total amount of 
money in this investment each month for one year. 

Month Interest earned Total amount of money in the account(EOM3) 
1 $ 0.00 $ 5000.00 
2 $ 33.33 $ 5033.33 
3   
4   
5   
6   
7   
8   
9   

10   
11   
12   

 

c) As you will see later, the amount of money Pn in the account after month n is given 
by 

𝑃𝑃𝑛𝑛 = 5000 �1 +
0.08
12

�
𝑛𝑛

. 

 

 
                                                           
3 EOM = end of month 
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d) Use this formula to check your calculations in (b). Then find the amount of money 
in the account after 5 years. 
 

e) How many years will it be before the account has doubled in value to $10000? 

 

 

II. Sequences 

As the discussion in the introduction and Investigation 1 illustrate, many discrete 
phenomena can be represented as lists of numbers (like the amount of money in an 
account over a period of months). You call these any such list a sequence. In other 
words, a sequence is nothing more than list of terms in some order. To be able to 
refer to a sequence in a general sense, you often list the entries of the sequence with 
subscripts, 

s1, s2, . . . , sn . . . , 

where the subscript denotes the position of the entry in the sequence. More 
formally, 

 

 

 

 

As an alternative to Definition 4.1, you can also consider a sequence to be a function 
𝑓𝑓 whose domain is the set of positive integers. In this context, the sequence s1, s2, s3, 
. . . would correspond to the function f satisfying 𝑓𝑓(𝑛𝑛) = 𝑠𝑠𝑛𝑛 for each positive integer 
n. This alternative view will be be useful in many situations. 

You will often write the sequence 

s1, s2, s3, . . . 

using the shorthand notation 𝑠𝑠𝑛𝑛. The value 𝑠𝑠𝑛𝑛 (alternatively 𝑠𝑠(𝑛𝑛)) is called the nth 
term in the sequence. If the terms are all 0 after some fixed value of n, you say the 
sequence is finite. Otherwise the sequence is infinite. You will work with both finite 
and infinite sequences, but focus more on the infinite sequences. With infinite 

Definition 4.1. A sequence is a list of terms s1, s2, s3, . . . in a 
specified order. 
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sequences, you are often interested in their end behavior and the idea of convergent 
sequences. 

 

Investigations 2-5: Exploring Sequences in the TI-Nspre 

• Recursive calculations 
• Explicit Formula  
• Recurrence relations  
• Plotting sequences  

 

 

2. A linear sequence of numbers of numbers, such as 2, 5, 8, … can be generated very 
easily in the Calculator App. The sequence 2, 5, 8, … has an initial term 2. You then 
add 3 to get the next term.  

a) Type 2 then press [Enter]. 

• Press [+] (this will paste an ‘Ans’) + 3.  
• The question is now ‘Ans + 3’. When you press [Enter], this is evaluated as ‘2 

+ 3’, which returns 5.  
• Pressing [Enter] again will re-evaluate the question (which is Ans + 3) as ‘5 + 

3’, giving an answer of 8. 
• This can be continued as many times as needed, thus generating a linear 

sequence in a recursive fashion.  

 

b) The sequence 4, 11, 32,…  can be generated by starting with 4, then multiplying 
the previous term by 3 and subtracting 1. This is done on the calculator as shown:  

• Starting number: Type 4, [Enter] 
• To get next term: Press [×]4 ‘3’ [-] ‘1’ 
• To get subsequent terms: Press [Enter] repeatedly 

 
More complex sequences can be generated in a similar way, through the use of [Ctrl] 
+ [Ans]. For example:  

                                                           
4 Multiplication sign 
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d) The sequence 5, 6, 13, 118, … can be generated by 

• Starting number (𝑢𝑢1) = 5 
• To get next term: Press [𝑥𝑥2]  [ - ] ‘4’ [×] [Ctrl] [Ans] 

 

e) What is the eighth term of the sequence generated below? 

• Starting number (𝑢𝑢1): 7 
• Next term: [ ÷] 2 + 3 [×] [Ctrl] [Ans] 

 

f) What is the 15th term  (𝑢𝑢15) of the sequence generated below? 

• Starting number (𝑢𝑢1): π 
• Next term:  [×] ‘3’ [ ÷] ‘2’ 

 

g) Write the recursive formula for the sequence 3, 5, 9, 17, 33, 65… 

 

h) Write the explicit formula for the sequence 3, 5, 9, 17, 33, 65… 

 

 

2. With an explicit formula stored in the 
calculator, you can quickly evaluate the stored 
formula at various values of n. 

• In Calculator mode, define your explicit 
formula:  

o Press: [Menu], [1. Actions],  
[1. Define]. and type 𝑢𝑢(𝑛𝑛) = 𝑛𝑛2 − 3  
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a) Evaluate the stored formula to find the value 
of the following terms: 

i.) 𝑢𝑢(7) 

ii.) 𝑢𝑢(47) 

iii.) 𝑢𝑢(−3) 

iv.) 𝑢𝑢(2
7
) 

v.) 𝑢𝑢(𝑒𝑒) 

 

 

 

3. Defining a recursive formula in Calculator 
mode is slightly more complicated, as a 
piecewise function needs to be defined.  

• Define the recurrence relation, v.  
• Use the templates set up the 

piecewise function. The button is found 
next to the ‘9’ key (pictured at right)  
 
 

 
 

• In the formula entry bar, you now have 
space for the initial terms for a recursive 
formula, and the option to change values 
of n and the step size.  
 

• The initial condition must be in the first 
row of the piecewise function.  

o Define  𝑣𝑣(𝑛𝑛) =

� 2,
3 ∙ 𝑣𝑣(𝑛𝑛 − 1)   

𝑛𝑛 = 1
𝑛𝑛 > 1 
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a) Evaluate the stored formula to find the value 
of the following terms: 

i.) 𝑣𝑣(6) 

ii.) 𝑣𝑣(13) 

iii.) 𝑣𝑣(21) 

 

b) fining a more complicated recurrence 
relation, e.g. the Lucas sequence, can be 
defined in the same way, with more rows in the piecewise definition. The initial 
terms must be in ascending order.  

 

 

 

c) Create your own sequence, define it below, and record the first 5 terms below 

 

 

 

 

4. Plotting an explicit formula: In Graph mode : 
(or in a Graph page) change the Graph Type to 
Sequence: 

• [Menu], [3. Graph Type], [5. Sequence], [1. 
Sequence] 

• In the formula entry bar, enter  
u1(n) = 0.2n + 3.  

• The initial term, u1(1) should be left 
blank (you will need to delete the 0 that 
is there by default), unless you want the initial term to have a value different 
from what the formula would give.  
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On pressing [ENTER], the formula entry bar 
will disappear. To bring it back, press [TAB], 
or [CTRL] + G.   

 

 

 
To trace along the plot, choose Graph Trace: [MENU], [5:TRACE], [1:GRAPH TRACE].  

 

 

 

Move left or right along the plot. Trace 
information is displayed in the bottom right 
corner as shown.  

 

 

 
 

5. The plot of a recursive function is defined in 
a similar way as before. Be careful to set up the 
recursive part of the relation using the same 
notation as the left-hand side of the equation, 
i.e. use u1( ), u2( ), etc…  

  

 

  

The values of n can also be changed from the default of 1 ≤ n ≤ 99, by editing the 3rd 
row of the formula entry bar.  
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To avoid the calculator slowing down (spinning clock), consider reducing the size of 
the domain to, say, 1 ≤ n ≤ 10.  

 

The step size can also be changed to any value 
by editing the nstep.  

What is the effect of changing the domain of 
the function? – horizontal translation.  

Follow the same steps to trace the plot, as for 
explicit formula.  

 

 

 

III. Finding the nth Term of a Sequence 

As seen in in Investigations 2-5, there are two ways to define a sequence – with a 
recursive formula or with an explicit formula. For each, as seen above, there are (at 
least) two ways of finding a specific term on a calculator: 

• Start with the first term [Enter], enter the formula to get the next term, and 
keep hitting enter the required number of times, or 

• Define a variable with the correct formula and enter the term number in u(n) 
form. 

Of course, you can use paper and pencil as well. 

 

Investigations 6: 

6a) Find the first five terms of the recursively defined sequence. 

i. 𝑎𝑎1 = 4, 𝑎𝑎𝑛𝑛 =  𝑎𝑎𝑛𝑛−1 + 13, for all 𝑛𝑛 ≥ 2 

ii. 𝑏𝑏1 = −3, 𝑏𝑏𝑛𝑛 =  𝑏𝑏 − 5, for all 𝑛𝑛 ≥ 2 

iii. 𝑐𝑐1 = 3
7

, 𝑐𝑐𝑛𝑛 =  2 ∙ 𝑐𝑐𝑛𝑛−1 + 1
3

, for all 𝑛𝑛 ≥ 2 

iv. 𝑑𝑑1 = 11, 𝑑𝑑𝑛𝑛 = 𝑑𝑑𝑛𝑛−1 ÷ 1.1, for all 𝑛𝑛 ≥ 2 
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b) For each of the following sequences, identify the formula as recursive or explicit. 
Then use your handheld to find the specified term. 

a. 𝑎𝑎𝑛𝑛 = 𝑛𝑛2 − 3𝑛𝑛,  find 𝑎𝑎37 

b. 𝑏𝑏1 = 2, 𝑏𝑏𝑛𝑛 =  2 ∙ 𝑏𝑏𝑛𝑛−1 − 3, for all 𝑛𝑛 ≥ 2,    find 𝑏𝑏21 

c. 𝑐𝑐𝑛𝑛 = 𝑛𝑛
𝑛𝑛+1

,  find 𝑐𝑐12 

d. 𝑑𝑑𝑛𝑛 = �1 + 1
𝑛𝑛

�
𝑛𝑛

,  find 𝑑𝑑19 

e. 𝑢𝑢1 = 1, 𝑢𝑢2 = 1,   𝑢𝑢𝑛𝑛 =  𝑢𝑢𝑛𝑛−1 + 𝑢𝑢𝑛𝑛−2, for all 𝑛𝑛 ≥ 2, find 𝑢𝑢50 

f. 𝑣𝑣𝑛𝑛 = 3 − 1
𝑛𝑛

,  find 𝑣𝑣42 

 

 

 

 

IV. Arithmetic and Geometric Sequences 

There are many types of sequences, but two are dominant in mathematical applications: 
those in which pairs of successive terms all have a common difference , which are known as 
arithmetic sequences, and those in which pairs of successive terms all have a common ratio, 
or geometric sequences). 

 

 

 

 

 

 

 

 

Definition. A sequence {an} is an arithmetic sequence if it can be 
written in the form 

{𝑎𝑎, 𝑎𝑎 + 𝑑𝑑, 𝑎𝑎 + 2𝑑𝑑, … , 𝑎𝑎 + (𝑛𝑛 − 1)𝑑𝑑, … } 
for some constant d. The number d is the common difference. Each 
term in an arithmetic sequence can be obtained recursively from its 
preceding term by adding d:  

𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 + 𝑑𝑑  for all 𝑛𝑛 ≥ 2. 
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Example 1.  

For the following arithmetic sequences, find (a) the common difference, (b) a recursive 
rule for the nth term, and (c) an explicit rule for the nth term. 

- 5, -2, 1, 4, 7, … 

Solution. 

(a) The difference between successive terms is 3. 

(b) The sequence is defined recursively by 𝑎𝑎1 = −5, 𝑎𝑎𝑛𝑛 =  𝑎𝑎𝑛𝑛−1 + 3, for all 𝑛𝑛 ≥ 2 

(c) The sequence is defined explicitly by 𝑎𝑎𝑛𝑛 = −5 + (𝑛𝑛 − 1)(3) = 3𝑛𝑛 − 8.  

 

 

 

 

 

 

 

 

 

Example 2.  

For the following geometric sequences, find (a) the common ratio, (b) a recursive rule for 
the nth term, and (c) an explicit rule for the nth term. 

1, -2, 4, -8, 16, … 

Solution. 

(a) The ratio between successive terms is -2. 

(b) The sequence is defined recursively by 𝑎𝑎1 = 1, 𝑎𝑎𝑛𝑛 =  (−2)𝑎𝑎𝑛𝑛−1, for all 𝑛𝑛 ≥ 2 

(c) The sequence is defined explicitly by 𝑎𝑎𝑛𝑛 = (1)(−2)𝑛𝑛−1 = (−2)𝑛𝑛−1.  

Definition. A sequence {an} is a geometric sequence if it can be written 
in the form 

{𝑎𝑎, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎2, … , 𝑎𝑎𝑎𝑎𝑛𝑛−1, … } 

for some nonzero constant r. The number r is the common ratio. 

Each term in a geometric sequence can be obtained recursively from 
its preceding term by multiplying by r: 

𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 ∙ 𝑎𝑎  for all 𝑛𝑛 ≥ 2. 
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Investigations 7: 

For the following sequences, (i.) identify the sequence as arithmetic or geometric, (ii.) state 
the common difference or ratio, (iii.) write a recursive rule for the nth term, and (iv.) write 
an explicit rule for the nth term. 

a) 8, 4, 2, 1, … 

 

b) -2, 1, 4, 7, …  

c) 1, 1.5, 2.25, 3.375, … 

d) 1, 3
2

, 2, 5
2

, … 

e) √2, 2√2, 3√2, 4√2, … 

f) -3, 9, -27, 81, … 

 

 

V. Formative Assessment 4.1A  

Complete the following online practice exercises in the Sequences and Series Review unit 
of Khan Academy’s AP Calculus BC course: 

1. https://www.khanacademy.org/math/ap-calculus-bc/series-bc/sequences-tut-
bc/e/understanding-sequences 
 

2.  https://www.khanacademy.org/math/ap-calculus-bc/series-bc/sequences-tut-
bc/e/geometric_sequences_1  
 

3. https://www.khanacademy.org/math/ap-calculus-bc/series-bc/sequences-tut-
bc/e/extend-geometric-sequences-negatives-fractions  
 

4. https://www.khanacademy.org/math/ap-calculus-bc/series-bc/sequences-tut-
bc/e/geometric_sequences_2  

 

 

https://www.khanacademy.org/math/ap-calculus-bc/series-bc/sequences-tut-bc/e/understanding-sequences
https://www.khanacademy.org/math/ap-calculus-bc/series-bc/sequences-tut-bc/e/understanding-sequences
https://www.khanacademy.org/math/ap-calculus-bc/series-bc/sequences-tut-bc/e/geometric_sequences_1
https://www.khanacademy.org/math/ap-calculus-bc/series-bc/sequences-tut-bc/e/geometric_sequences_1
https://www.khanacademy.org/math/ap-calculus-bc/series-bc/sequences-tut-bc/e/extend-geometric-sequences-negatives-fractions
https://www.khanacademy.org/math/ap-calculus-bc/series-bc/sequences-tut-bc/e/extend-geometric-sequences-negatives-fractions
https://www.khanacademy.org/math/ap-calculus-bc/series-bc/sequences-tut-bc/e/geometric_sequences_2
https://www.khanacademy.org/math/ap-calculus-bc/series-bc/sequences-tut-bc/e/geometric_sequences_2
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VI. Finding the Limit of a Sequence 

In the following Investigation, you will examine which sequences have limits. As with 
functions, you can use a graphing calculator to suggest what a limiting value may be. 

. 

 

Investigations 8: 

8a) Let 𝑠𝑠𝑛𝑛 be the nth term in the sequence 1, 2, 3, . . .. 

Find a formula for 𝑠𝑠𝑛𝑛 and use appropriate technological tools to draw a graph of 
entries in this sequence by plotting points of the form (𝑛𝑛, 𝑠𝑠𝑛𝑛) for some values of n. 
Most graphing calculators can plot sequences;  

Using your knowledge of limits of continuous functions as 𝑥𝑥 → ∞, decide if this 
sequence {𝑠𝑠𝑛𝑛} has a limit as 𝑛𝑛 → ∞. Explain your reasoning. 

 

b) Let 𝑠𝑠𝑛𝑛 be the nth term in the sequence 1, 1
2

, 1
3

, 1
4

, 1
5

…. Find a formula for 𝑠𝑠𝑛𝑛. Draw a 
graph of some points in this sequence. Using your knowledge of limits of continuous 
functions as 𝑥𝑥 → ∞, decide if this sequence {𝑠𝑠𝑛𝑛} has a limit as 𝑛𝑛 → ∞. Explain your 
reasoning. 

 

(c) Let 𝑠𝑠𝑛𝑛 be the nth term in the sequence 2, 3
2

, 4
3

, 5
4

, 6
5

…. Find a formula for 𝑠𝑠𝑛𝑛. 

Using your knowledge of limits of continuous functions as 𝑥𝑥 → ∞, decide if this 
sequence {𝑠𝑠𝑛𝑛} has a limit as 𝑛𝑛 → ∞. Explain your reasoning. 

 

 

 

Next you will formalize the ideas from Investigation 8. 
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Investigation 9:  

a) Recall your earlier work with limits involving infinity. State clearly what it means 
for a continuous function f to have a limit L as 𝑥𝑥 → ∞. 

 

b) Given that an infinite sequence of real numbers is a function from the integers to 
the real numbers, apply the idea from part (a) to explain what you think it means for 
a sequence {𝑠𝑠𝑛𝑛} to have a limit as 𝑛𝑛 → ∞. 

 

c) Based on your response to (b), decide if the sequence �1+𝑛𝑛
2+𝑛𝑛

� a limit as 𝑛𝑛 → ∞. If so, 

what is the limit? If not, why not? 

 

In Investigations 8 and 9 you investigated the notion of a sequence 𝑠𝑠𝑛𝑛 having a limit 
as n goes to infinity. If a sequence 𝑠𝑠𝑛𝑛 has a limit as n goes to infinity, you say that the 
sequence converges or is a convergent sequence. If the limit of a convergent 
sequence is the number L, you use the same notation as you did for continuous 
functions and write 

lim
𝑛𝑛→∞

𝑠𝑠𝑛𝑛 = 𝐿𝐿. 

If a sequence 𝑠𝑠𝑛𝑛 does not converge then you say that the sequence 𝑠𝑠𝑛𝑛 diverges. 
Convergence of sequences is a major idea in this section and you describe it more 
formally as follows. 

 

 

 

 

Remember, the idea of sequence having a limit as 𝑛𝑛 → ∞ is the same as the idea of a 
continuous function having a limit as 𝑥𝑥 → ∞. The only new wrinkle here is that your 
sequences are discrete instead of continuous. 

You conclude this lesson with a few more examples in the following activity. 

 

A sequence {𝑠𝑠𝑛𝑛} of real numbers converges to a number L if you 
can make all values of 𝑠𝑠𝑘𝑘 for 𝑘𝑘 ≥ 𝑛𝑛 as close to L as you want by 
choosing n to be sufficiently large. 
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Investigation 10: Use graphical and/or algebraic methods to determine whether 
each of the following sequences converges or diverges. If the sequence converges, 
find its limit. 

a)  �1+2𝑛𝑛
3𝑛𝑛−2

� 

b)  𝑎𝑎𝑛𝑛 = 5+3𝑛𝑛

10+2𝑛𝑛 

c)  𝑎𝑎𝑛𝑛 = 𝑛𝑛 sin �1
𝑛𝑛

� 

d)  �(−1)𝑛𝑛 � 𝑛𝑛+7
𝑛𝑛2+1

�� 

e)  𝑎𝑎𝑛𝑛 = 2𝑛𝑛5+3𝑛𝑛2−𝑛𝑛+3
23𝑛𝑛4−16𝑛𝑛+1

 

f)  � 10𝑛𝑛

2+𝑛𝑛!
� (where ! is the factorial symbol and 𝑛𝑛! = 𝑛𝑛(𝑛𝑛 − 1)(𝑛𝑛 − 2) … (2)(1)  for 

any positive integer n (as convention you define 0! to be 1)). 

 

 

 

III. Exercises 

1. Finding limits of convergent sequences can be a challenge. However, there is a 
useful tool you can adapt from your study of limits of continuous functions at infinity 
to use to find limits of sequences. You will explore with the sequence 

ln(𝑛𝑛)
𝑛𝑛

 

a) Calculate the first 10 terms of this sequence. Based on these calculations, 
do you think the sequence converges or diverges? Why? 

b) For this sequence, there is a corresponding continuous function f defined 
by 

𝑓𝑓(𝑥𝑥) =
ln(𝑥𝑥)

𝑥𝑥
 

Draw the graph of f (x) on the interval [0, 10] and then plot the entries of the 
sequence on the graph. What conclusion do you think you can draw about the 
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sequence �ln(𝑛𝑛)
𝑛𝑛

� if lim
𝑛𝑛→∞

𝑓𝑓(𝑥𝑥) = 𝐿𝐿. Explain. 

 

(c) Note that f (x) has the indeterminate form ∞
∞

 as x goes to infinity. What 
idea from differential calculus can you use to calculate lim

𝑛𝑛→∞
𝑓𝑓(𝑥𝑥) = 𝐿𝐿.? Use this 

method to find lim
𝑛𝑛→∞

𝑓𝑓(𝑥𝑥) = 𝐿𝐿. What, then, is lim
𝑛𝑛→∞

ln(𝑛𝑛)
𝑛𝑛

.? 

 

2. Return to the example begun in Investigation 1 to see how to derive the formula 
for the amount of money in an account at a given time. You do this in a general 
setting. Suppose you invest P dollars (called the principal) in an account paying r% 
interest compounded monthly. In the first month you will receive 𝑟𝑟

12
 (here r is in 

decimal form; e.g., if you have 8% interest, you write 0.08
12

 ) of the principal P in 
interest, so you earn 

𝑃𝑃 �
𝑎𝑎

12
� 

dollars in interest. Assume that you reinvest all interest. Then at the end of the first 
month your account will contain the original principal P plus the interest, or a total 
of 

𝑃𝑃1 = 𝑃𝑃 + 𝑃𝑃 �
𝑎𝑎

12
� = 𝑃𝑃 �1 +

𝑎𝑎
12

� 

dollars. 

 

a) Given that your principal is now 𝑃𝑃1 dollars, how much interest will you 
earn in the second month? If 𝑃𝑃2 is the total amount of money in your account 
at the end of the second month, explain why 

𝑃𝑃2 = 𝑃𝑃1 �1 +
𝑎𝑎

12
� = 𝑃𝑃 �1 +

𝑎𝑎
12

�
2

 

 

b) Find a formula for 𝑃𝑃3, the total amount of money in the account at the end 
of the third month in terms of the original investment P. 

c) There is a pattern to these calculations. Let 𝑃𝑃𝑛𝑛 the total amount of money in 
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the account at the end of the third month in terms of the original investment 
P. Find a formula for 𝑃𝑃𝑛𝑛. 

 

3. Sequences have many applications in mathematics and the sciences. In a recent 
paper5 the authors write 

The incretin hormone glucagon-like peptide-1 (GLP-1) is capable of 
ameliorating glucose-dependent insulin secretion in subjects with diabetes. 
However, its very short half-life (1.5-5 min) in plasma represents a major 
limitation for its use in the clinical setting. 

The half-life of GLP-1 is the time it takes for half of the hormone to decay in its 
medium. For this exercise, assume the half-life of GLP-1 is 5 minutes. So if A is the 
amount of GLP-1 in plasma at some time t, then only 𝐴𝐴

2
 of the hormone will be 

present after t + 5 minutes. Suppose 𝐴𝐴0 = 100 grams of the hormone are initially 
present in plasma. 

a) Let A1 be the amount of GLP-1 present after 5 minutes. Find the value of 
A1. 

b) Let A2 be the amount of GLP-1 present after 10 minutes. Find A2. 

c) Let A3 be the amount of GLP-1 present after 15 minutes. Find A3. 

d) Let A4 be the amount of GLP-1 present after 20 minutes. Find A4. 

e)  Let 𝐴𝐴𝑛𝑛 be the amount of GLP-1 present after 5n minutes.  Find a formula 
for 𝐴𝐴𝑛𝑛. 

f) Does the sequence 𝐴𝐴𝑛𝑛 converge or diverge? If the sequence converges, find 
its limit and explain why this value makes sense in the context of this 
problem. 

g) Determine the number of minutes it takes until the amount of GLP-1 in 
plasma is 1 gram.  

 

 

                                                           
5 Hui H, Farilla L, Merkel P, Perfetti R. The short half-life of glucagon-like peptide-1 in plasma 
does not reflect its long-lasting beneficial effects, Eur J Endocrinol 2002 Jun;146(6):863-9. 
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4. Continuous data is the basis for analog information, like music stored on old 
cassette tapes or vinyl records. A digital signal like on a CD or MP3 file is obtained by 
sampling an analog signal at some regular time interval and storing that information. 
For example, the sampling rate of a compact disk is 44,100 samples per second. So a 
digital recording is only an approximation of the actual analog information. Digital 
information can be manipulated in many useful ways that allow for, among other 
things, noisy signals to be cleaned up and large collections of information to be 
compressed and stored in much smaller space. While you won’t investigate these 
techniques in this chapter, this exercise is intended to give an idea of the importance 
of discrete (digital) techniques. 

Let f  be the continuous function defined by  f (x)  = sin 4x  on the interval  [0, 10]. A 
graph of f is shown in the graph below. You approximate f by sampling, that is by 
partitioning the interval [0, 10] into uniform subintervals and recording the values 
of f at the endpoints. 

 

a) Ineffective sampling can lead to several problems in reproducing the original 
signal. As an example, partition the interval [0, 10] into 8 equal length subintervals 
and create a list of points (the sample) using the endpoints of each subinterval. Plot 
your sample on graph of f above. What can you say about the period of your sample 
as compared to the period of the original function? 

(b) The sampling rate is the number of samples of a signal taken per second. As part 
(a) illustrates, sampling at too small a rate can cause serious problems with 
reproducing the original signal (this problem of inefficient sampling leading to an 
inaccurate approximation is called aliasing ). There is an elegant theorem 
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called the Nyquist-Shannon Sampling Theorem that says that human perception is 
limited, which allows that replacement of a continuous signal with a digital one 
without any perceived loss of information. This theorem also provides the lowest 
rate at which a signal can be sampled (called the Nyquist rate) without such a loss of 
information. The theorem states that you should sample at double the maximum 
desired frequency so that every cycle of the original signal will be sampled at least 
two points. 

Recall that the frequency of a sinusoidal function is the reciprocal of the period. 
Identify the frequency of the function f and determine the number of partitions of 
the interval [0, 10] that give you the Nyquist rate. 

c) Humans cannot typically pick up signals above 20 kHz. Explain why, then, that 
information on a compact disk is sampled at 44,100 Hz. 

 

 
 

V. Formative Assessment 4.1B 

Complete the following online practice exercises in the Sequences and Series unit of Khan 
Academy’s AP Calculus BC course: 

• https://www.khanacademy.org/math/ap-calculus-bc/series-bc/seq-conv-diverg-
bc/e/convergence-and-divergence-of-sequences  

 
 
 
 
 

https://www.khanacademy.org/math/ap-calculus-bc/series-bc/seq-conv-diverg-bc/e/convergence-and-divergence-of-sequences
https://www.khanacademy.org/math/ap-calculus-bc/series-bc/seq-conv-diverg-bc/e/convergence-and-divergence-of-sequences

