The Sucker Project

Materials (per student):

- dental floss (approx. 4 inches in length)
- ruler with millimeter markings
- sucker with a circular cross-section
- clock that measures time in seconds

Procedure:

1. Use your dental floss and ruler to measure the initial circumference of the sucker in millimeters.
2. Determine the initial radius of the sucker (in millimeters) by using $C=2 \pi r$ and record it in the box corresponding to time $=0$ in the table below.
3. Start sucking on the sucker and record 3 more radii and the corresponding elapsed times, measured in seconds. Wait approximately 120 seconds between measurements.

Time (x)	0	120	240	360
Radius (y)				

4. Enter the data from your table into your calculator and graph it.
a. What pattern do you see?
b. Why do you think this pattern happens? \qquad
5. Use the linear regression feature on the calculator to calculate the equation of the relationship of the data. Equation: \qquad
6. A line has a \qquad slope, so the slope of the tangent line at any point on the line will be \qquad . Therefore, $\frac{d r}{d t}=$ \qquad . Use this $\frac{d r}{d t}$ and the data from your table to answer the questions that follow.
7. Lisa is sucking on a sucker that had an initial radius of 20 millimeters. If the rate of change of the radius of the sucker is -0.09 millimeters/second, what is the rate of change of volume:
a. when $r=15 \mathrm{~mm}$?
b. when $r=10 \mathrm{~mm}$?
c. What do you think happens to the rate of change of the volume as the radius gets smaller?
d. Use what you've learned in AP Calculus to mathematically support your answer for 7c.
\qquad
\qquad
