
2.2H L’Hôpital to the 
Rescue 
 

Using Derivatives to Evaluate 
Limits 
__________________________ 

 
Because differential calculus is based 
on the definition of the derivative, and 
the definition of the derivative 
involves a limit, there is a sense in which all of calculus rests on limits. In addition, 
the limit involved in the limit definition of the derivative is one that always 

generates an indeterminate form of . If f is a differentiable function for which f ‘ x  

exists, then when you consider 

𝑓 𝑎 lim
→

𝑓 𝑎 ℎ 𝑓 𝑎
ℎ

 

it follows that not only does ℎ → 0 in the denominator, but also  
𝑓 𝑎 ℎ 𝑓 𝑎 → 0 in the numerator, since f is continuous. Thus, the fundamental 

form of the limit involved in the definition of 𝑓 𝑥  is  . Remember, saying a limit has 

an indeterminate form only means that you don’t yet know its value and have more 

work to do: indeed, limits of the form  can take on any value, as is evidenced by 

evaluating 𝑓 𝑥  for varying values of x for a function such as 𝑓 𝑥 𝑥 . 

Of course, you have learned many different techniques for evaluating the limits that 
result from the derivative definition, and including many shortcut rules that enable 
you to evaluate these limits quickly and easily. In this lesson, you turn the situation 
upside-down: rather than using limits to evaluate derivatives, you explore how to 
use derivatives to evaluate certain limits. This topic will combine several different 
ideas, including limits, derivative shortcuts, local linearity, and the tangent line 
approximation. 

 

Investigation 1: Let h be the function given by ℎ 𝑥 . 

a  What is the domain of h? 
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b  Explain why lim
→

 results in an indeterminate form. 

 

c  Next, investigate the behavior of both the numerator and denominator of h near 
the point where x  1. Let f x   x5  x  2 and g x   x2 - 1. Find the local 
linearizations of f and g at a  1, and call these functions Lf x  and Lg x , 
respectively. 

 

d  Explain why ℎ 𝑥   for x near a  1. 

 

e  Using your work from c  and d , evaluate 

lim
→

𝐿 𝑥
𝐿 𝑥

 

What do you think your result tells you about lim
→

 ℎ 𝑥 ? 

 

f  Investigate the function h x  graphically and numerically near x  1. What do you 
think is the value of lim

→
 ℎ 𝑥 ? 

 

 

 

II. Using derivatives to evaluate indeterminate limits of the form  

The fundamental idea of Investigation 1 – that you can evaluate an indeterminate 

limit of the form  by replacing each of the numerator and denominator with their 

local linearizations at the point of interest – can be generalized in a way that enables 
you to easily evaluate a wide range of limits. Assume that you have a function h x  

that can be written in the form ℎ 𝑥  where f and g are both differentiable at x 

 a and for which f a   g a   0. You are interested in finding a way to evaluate 
the indeterminate limit given by lim

→
 ℎ 𝑥 .  
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In the figure below, you see a visual representation of the situation involving such 
functions f and g. In particular, notice that both f and g have an x-intercept at the 
point where x  a. Since each function is differentiable, each is locally linear, and you 
can find their respective tangent line approximations Lf and Lg at x  a, which are 

also shown in the figure. Since you are interested in the limit of  as 𝑥 → 𝑎, the 

individual behaviors of f x  and g x  as 𝑥 → 𝑎 are key to understand. Here, you take 
advantage of the fact that each function and its tangent line approximation become 
indistinguishable as 𝑥 → 𝑎. 

 

First, recall that 𝐿 𝑥 𝑓 𝑎 𝑥 𝑎 𝑓 𝑎   and 𝐿 𝑥 𝑔 𝑎 𝑥 𝑎 𝑔 𝑎 . The 

critical observation is that when taking the limit, because x is getting arbitrarily 
close to a, you can replace f with 𝐿  and replace g with 𝐿 , and thus you observe that 

lim
→

𝑓 𝑥
𝑔 𝑥

lim
→

𝐿 𝑥
𝐿 𝑥

 

lim
→

𝑓 𝑎 𝑥 𝑎 𝑓 𝑎
𝑔 𝑎 𝑥 𝑎 𝑔 𝑎

 

Next, remember a key fundamental assumption: that both f a   0 and g a   0, as 
this is precisely what makes the original limit indeterminate. Substituting these 
values for f a  and g a  in the limit above, you now have 

lim
→

𝑓 𝑥
𝑔 𝑥

lim
→

𝑓 𝑎 𝑥 𝑎
𝑔 𝑎 𝑥 𝑎

 

lim
→

𝑓′ 𝑎
𝑔′ 𝑎
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where the latter equality holds since x is approaching but not equal to  a,  

so 1. Finally, notice that f ‘ a  is constant with respect to x, and thus 

lim
→

𝑓 𝑥
𝑔 𝑥

𝑓′ 𝑎
𝑔′ 𝑎

 

 You have, of course, implicitly made the assumption that 𝑔′ 𝑎 0, which is 

essential to the overall limit having the value  . Let’s summarize the work above 

with the statement of L’Hôpital’s Rule, which is the formal name of the result you 
have shown. 

 

In practice, you will typically work with a slightly more general version of L’Hôpital’s 
Rule, which states that under the identical assumptions as the boxed rule above and 
the extra assumption that g’ is continuous at x  a  

lim
→

𝑓 𝑥
𝑔 𝑥

𝑓′ 𝑥
𝑔′ 𝑥

 

provided the right-hand limit exists. This form reflects the fundamental benefit of 

L’Hôpital’s Rule: if  produces an indeterminate limit of form  as 𝑥 → 𝑎, it is 

equivalent to consider the limit of the quotient of the two functions’ derivatives, 

. For example, if you consider the limit from Investigation 1, 

lim
→

𝑥 𝑥 2
𝑥 1

, 

by L’Hôpital’s Rule you have that 

lim
→

𝑥 𝑥 2
𝑥 1

lim
→

5𝑥 1
2𝑥

6
2

3. 

By being able to replace the numerator and denominator with their respective 
derivatives, you often move from an indeterminate limit to one whose value you can 
easily determine. 

L’Hôpital’s Rule: Let f and g be differentiable at  x  a, and suppose that f a  
 g a   0, and that 𝑔′ 𝑎 0. Then 

lim
→

𝑓 𝑥
𝑔 𝑥

𝑓′ 𝑎
𝑔′ 𝑎
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Investigation 2: Evaluate each of the following limits. If you use L’Hôpital’s Rule, 
indicate where it was used, and be certain its hypotheses are met before you apply 
it. 

a  lim
→

  

b  lim
→

  

c   lim
→

  

d  lim
→

 

 

While L’Hôpital’s Rule can be applied in an entirely algebraic way, it is important to 
remember that the genesis of the rule is graphical: the main idea is that the slopes of 

the tangent lines to f and g at 𝑥 → 𝑎 determine the value of the limit of  as 𝑥 → 𝑎. 

You see this in the figure below, which is a modified version of graphs used earlier, 
you can see from the grid that f ‘ a   2 and g’ a   -1, hence by L’Hôpital’s Rule, 

  

lim
→

𝑓 𝑥
𝑔 𝑥

𝑓′ 𝑎
𝑔′ 𝑎

2
1

2. 

 

Notice that it’s not the fact that f and g both approach zero that matters most, but 
rather the rate at which each approaches zero that determines the value of the limit. 
This is a good way to remember what L’Hôpital’s Rule says: if f a   g a   0, the 

limit of  as 𝑥 → 𝑎 is given by the ratio of the slopes of f and g at x  a. 
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Investigation 3: In this activity, you reason graphically from the following figure to 
evaluate limits of ratios of functions about which some information is known. 

 

a  Use the left-hand graph to determine the values of f 2 , f ‘ 2 , g 2 , and g’ 2  . 
Then, evaluate 

lim
→

𝑓 𝑥
𝑔 𝑥

 

b  Use the middle graph to find p 2 , p’ 2 , q 2 , and q’ 2 . Then, determine the 
value of 

lim
→

𝑝 𝑥
𝑞 𝑥

 

 

c  Use the right-hand graph to compute r 2 , r ‘ 2 , s 2 , s’ 2 . Explain why you 
cannot determine the exact value of 

lim
→

𝑟 𝑥
𝑠 𝑥

 

without further information being provided, but that you can determine the sign of  

lim
→

. In addition, state what the sign of the limit will be, with justification. 

 

III. Limits involving ∞ 

The concept of infinity, denoted ∞, arises naturally in calculus, like it does in much of 
mathematics. It is important to note from the outset that ∞ is a concept, but not a 
number itself. Indeed, the notion of ∞ naturally invokes the idea of limits. Consider, 
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for example, the function 𝑓 𝑥  , whose graph is pictured below.  

 

Notice that x  0 is not in the domain of f , so you may naturally wonder what 
happens as 𝑥 → 0. As 𝑥 → 0 , you observe that f x  increases without bound. That is, 
you can make the value of f x  as large as you like by taking x closer and closer but 
not equal  to 0, while keeping x  0. This is a good way to think about what infinity 
represents: a quantity is tending to infinity if there is no single number that the 
quantity is always less than. 

Recall that when you write lim
→

𝑓 𝑥 𝐿, you can make f x  as close to L as you’d like 

by taking x sufficiently close but not equal  to a. You thus expand this notation and 
language to include the possibility that either L or a can be ∞1. For instance, for 

𝑓 𝑥 , you now write 

lim
→

1
𝑥

∞ 

By which, it is meant that one can make  as large as you like by taking x sufficiently 

close to but not equal  to 0. In a similar way,  

lim
→

1
𝑥

0 

since you can make 1 as close to 0 as you’d like by taking x sufficiently large i.e., by 
letting x increase without bound . 

 

                                                            
1 The College Board does not condone this terminology for the AP test; instead they 
prefer saying this limit is nonexistent. 
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In general, you understand the notation lim
→

𝑓 𝑥 ∞ to mean that you can make f 

x  as large as you’d like by taking x sufficiently close but not equal  to a, and the 
notation lim

→
𝑓 𝑥 𝐿 to mean that you can make f x  as close to L as you’d like by 

taking x sufficiently large. This notation applies to left- and right-hand limits, plus 

you can also use limits involving ∞. For example, returning to the graph  𝑓 𝑥  

on the previous page, one can say that 

lim
→

∞ and lim
→

0 

Finally, you write 

lim
→

𝑓 𝑥 ∞ 

when you can make the value of f x  as large as you’d like by taking x sufficiently 
large. For example, 

lim
→

𝑥 ∞ 

Note particularly that limits involving infinity identify vertical and horizontal 
asymptotes of a function. If lim

→
𝑓 𝑥 ∞, then x  a is a vertical asymptote of f , 

while if lim
→

𝑓 𝑥 𝐿, then y  L is a horizontal asymptote of f . Similar statements 

can be made using ∞, as well as with left- and right-hand limits as 𝑥 → 𝑎  or 
 𝑥 → 𝑎  . 

In precalculus classes, it is common to study the end behavior of certain families of 
functions, by which you mean the behavior of a function as 𝑥 → ∞ and as 𝑥 → ∞.  

Next, you will examine a library of some familiar functions and note the values of 
several limits involving ∞. 

 

 For the natural exponential function ex, notice that lim
→

𝑒 ∞ and 

lim
→

𝑒 0, while for the related exponential decay function e-x , observe that 

these limits are reversed, with lim
→

𝑒 0 and lim
→

𝑒 ∞ .  

 
Turning to the natural logarithm function, the  lim

→
ln 𝑥 ∞ and 

lim
→

ln 𝑥 ∞. While both ex and ln 𝑥  grow without bound as 𝑥 → ∞, the 

exponential function does so much more quickly than the logarithm function does. 
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You’ll soon use limits to quantify what is meant by “quickly.” 

 

 For polynomial functions of the form 𝑝 𝑥 𝑎 𝑥 𝑎 𝑥 ⋯ 𝑎 𝑥
𝑎 , the end behavior depends on the sign of 𝑎  and whether the highest power 
n is even or odd.  
 

o If n is even and an is positive, then 
lim
→

p x ∞ and lim
→

p x ∞, as in the 

plot of g at right.  
 

o If instead 𝑎  is negative, then lim
→

p x

∞ and lim
→

p x ∞.  

 
o In the situation where n is odd, then either 

lim
→

p x ∞ and lim
→

p x ∞ which occurs when 𝑎  is positive, 

as in the graph of f in Figure 2.23 , or lim
→

p x ∞ and lim
→

p x

∞ when 𝑎  is negative . 

 
 

A function can fail to have a limit as 𝑥 → ∞. For 
example, consider the plot of the sine function at left. 
Because the function continues oscillating between -1 
and 1 as 𝑥 → ∞, you say that lim

→
sin x  does not exist. 

 

 

 

 Finally, it is straightforward to analyze the behavior of any rational function 
as 𝑥 → ∞. 

Consider, for example, the function 𝑞 𝑥 . 

 

Note that both 3𝑥 4𝑥 5 → ∞ as 𝑥 → ∞ and 7𝑥 9𝑥 10 → ∞ as 𝑥 → ∞. 
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Here you say that 𝑞 𝑥  has indeterminate form  , much like you did when you 

encountered limits of the form  . You can determine the value of this limit through a 

standard algebraic approach. Multiplying the numerator and denominator each by  

, you find that 

lim
→

𝑞 𝑥  lim
→

 
3𝑥 4𝑥 5

7𝑥 9𝑥 10
∙

1
𝑥
1

𝑥

 

lim
→

𝑞 𝑥  lim
→

 
3 4 ∙ 1

𝑥 5 ∙ 1
𝑥

7 9 ∙ 1
𝑥 10 ∙ 1

𝑥

3
7

 

since → 0 and → 0 as 𝑥 → ∞. This shows that the rational function q has a 

horizontal asymptote at y  3 . A similar approach can be used to determine the limit 
of any rational function as 𝑥 → ∞. 

 

But how should you handle a limit such as 

lim
→

𝑥
𝑒

  ?  

Here, both 𝑥 → ∞ and 𝑒 → ∞, but there is not an obvious algebraic approach that 
enables you to find the limit’s value. Fortunately, it turns out that L’Hôpital’s Rule 
extends to cases involving infinity. 

 

 To be technically correct, you need to the additional hypothesis that 𝑔′ 𝑥 0 on 
an open interval that contains a or in every neighborhood of infinity if a is ∞; this is 
almost always met in practice.  

 

L’Hôpital’s Rule ∞ : If f and g are differentiable and both 0 or both approach 
∞ as 𝑥 → 𝑎, where a is allowed to be ∞, then 

lim
→

𝑓 𝑥
𝑔 𝑥

lim
→

𝑓′ 𝑎
𝑔′ 𝑎
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To evaluate lim
→

   , you first must confirm that you can apply L’Hôpital’s Rule. 

Write something like: 

Since both 𝑥 → ∞ and 𝑒 → ∞ as 𝑥 → ∞, the indeterminate form   results. 

∴2 L’Hôpital’s Rule is applied, as follows: 

𝑙𝑖𝑚
→

𝑥
𝑒

  𝑙𝑖𝑚
→

2𝑥
𝑒

 

 

This updated limit is still indeterminate and of the form      

∴ L’Hôpital’s Rule is applied a second time, as follows: 

𝑙𝑖𝑚
→

𝑥
𝑒

  𝑙𝑖𝑚
→

2𝑥
𝑒

𝑙𝑖𝑚
→

2
𝑒

 

Since 2 is constant and 𝑒 → ∞ as 𝑥 → ∞,, it follows that  𝑥 → ∞ 

This shows that 

𝑙𝑖𝑚
→

𝑥
𝑒

  0 

 

 

Investigation 4: Evaluate each of the following limits. If you use L’Hôpital’s Rule, 
indicate where it was used, and verify its hypotheses are met before you apply it. 

a  lim
→  

   

 

b  lim
→ 𝑥2   

 

c  lim
→

    

 

                                                            
2 This is the abbreviation for “therefore,” or “in conclusion.” 
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d  lim
→

    

 

e  lim
→

𝑥𝑒   

 

 

When you are considering the limit of a quotient of two functions  that results in 

an indeterminate form of  , in essence you are asking which function is growing 

faster without bound. You say that the function g dominates the function f as 𝑥 → ∞ 
provided that 

lim
→

𝑓 𝑥
𝑔 𝑥

0 

whereas f dominates g provided that lim
→

∞. Finally, if the value of  

lim
→

 is finite and nonzero, you say that f and g grow at the same rate.  

 

 

IV. Exercises 

1. Let f and g be differentiable functions about which the following information is 
known: 

f 3   g 3   0, f ‘ 3   g’ 3   0, f ‘’ 3   ?2, and g’’ 3   1.  

Let a new function h be given by the rule ℎ 𝑥 . On the same set of axes, sketch 

possible graphs of f and g near x  3, and use the provided information to determine 
the value of 

lim
→

𝑓 𝑥
𝑔 𝑥

 

Provide explanation to support your conclusion. 
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2. Find all vertical and horizontal asymptotes of the function 

𝑅 𝑥
3 𝑥 𝑎 𝑥 𝑏
5 𝑥 𝑎 𝑥 𝑐

 

where a, b, and c are distinct, arbitrary constants. In addition, state all values of x for 
which R is not continuous. Sketch a possible graph of R, clearly labeling the values of 
a, b, and c. 

 

 

3. Consider the function g x   x2x , which is defined for all x  0. Observe that  
lim
→

𝑔 𝑥 0 is indeterminate due to its form of 0 . Think about how you know 

that 0k  0 for all k  0, while b0  1 for all 𝑏 0, but that neither rule can apply to 
0 .  

a  Let h x   ln g x . Explain why h x   2x ln x . 

b  Next, explain why it is equivalent to write ℎ 𝑥   . 

c  Use L’Hôpital’s Rule and your work in b  to compute lim
→

ℎ 𝑥 . 

d  Based on the value of lim
→

ℎ 𝑥 , determine lim
→

𝑔 𝑥 . 

 

 

4. Recall you say that function g dominates function f provided that lim
→

𝑓 𝑥 ∞, 

lim
→

𝑔 𝑥 ∞ and lim
→

0. 

 

a  Which function dominates the other: ln x  or √𝑥 ? 

 

b  Which function dominates the other: ln x  or √𝑥 ? n  can be any positive 
integer  
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c  Explain why ex will dominate any polynomial function. 

 

d  Explain why xn will dominate ln x  for any positive integer n. 

 

e  Give any example of two nonlinear functions such that neither dominates the 
other. 

 

 

V. Practice – Khan Academy 

1. Complete the following practice exercises in the Derivative Applications unit of 
Khan Academy’s AP Calculus AB course:  

a . https://www.khanacademy.org/math/ap-calculus-ab/derivative-
applications-ab/lhopitals-rule-ab/e/lhopitals_rule  

b.  https://www.khanacademy.org/math/ap-calculus-ab/derivative-
applications-ab/lhopitals-rule-ab/e/lhopitals-rule-composite-
exponential-functions  
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