
2.27 Buried 
Treasures 
 
 

Derivatives of Functions 
Given Implicitly 
 
_____________________ 
In all of your studies with 
derivatives to date, you have 
worked in a setting where you 
can express a formula for the function of interest explicitly in terms of x. But there 
are many interesting curves that are determined by an equation involving x and y for 
which it is impossible to solve for y in terms of x. Perhaps the simplest and most 
natural of all such curves are circles.  

 

Because of the circle’s symmetry, for each x value strictly between the endpoints of 
the horizontal diameter, there are two corresponding y-values.  For 

instance, in the figure above, you have labeled A = (-3,  √7) and B = (-3, −√7), and 
these points demonstrate that the circle fails the vertical line test. Hence, it is 
impossible to represent the circle through a single function of the form y = f (x) . At 
the same time, portions of the circle can be represented explicitly as a function of x, 
such as the highlighted arc that is magnified in the center of figure. Moreover, it is 
evident that the circle is locally linear, so you ought to be able to find a tangent line 
to the curve at every point; thus, it makes sense to wonder if you can compute 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 at 

any point on the circle, even though you cannot write y explicitly as a function of x. 
Finally, you note that the right-hand curve above is called a lemniscate and is just 
one of many fascinating possibilities for implicitly given curves. 
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In working with implicit functions, you will often be interested in finding an 
equation for 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
  that tells you the slope of the tangent line to the curve at a point  

(x, y). To do so, it will be necessary for you to work with y while thinking of y as a 
function of x, but without being able to write an explicit formula for y in terms of x.  

 

Investigation 1: Let f be a differentiable function of x (whose formula is not known) 
and recall that 𝑑𝑑

𝑑𝑑𝑑𝑑
 [𝑓𝑓(𝑥𝑥)] and f ‘(x) are interchangeable notations. Determine each of 

the following derivatives of combinations of explicit functions of x, the unknown 
function f , and an arbitrary constant c. 

a)  𝑑𝑑
𝑑𝑑𝑑𝑑

 [𝑥𝑥2 + 𝑓𝑓(𝑥𝑥)] 

b)   𝑑𝑑
𝑑𝑑𝑑𝑑

 [𝑥𝑥2𝑓𝑓(𝑥𝑥)] 

c)   𝑑𝑑
𝑑𝑑𝑑𝑑

 [𝑐𝑐 + 𝑥𝑥 + 𝑓𝑓(𝑥𝑥)2] 

d)  𝑑𝑑
𝑑𝑑𝑑𝑑

 [𝑓𝑓(𝑥𝑥)2] 

e)  𝑑𝑑
𝑑𝑑𝑑𝑑

 [𝑥𝑥(𝑓𝑓(𝑥𝑥) + 𝑓𝑓(𝑐𝑐𝑥𝑥) + 𝑐𝑐𝑓𝑓(𝑥𝑥)] 

 

 

 

 

II. Implicit Differentiation 

Because a circle is perhaps the simplest of all curves that cannot be represented 
explicitly as a single function of x, let’s begin your exploration of implicit 
differentiation with the example of the circle given by x2 + y2 = 16. It is visually 
apparent that this curve is locally linear, so it makes sense for you to want to find the 
slope of the tangent line to the curve at any point, and moreover to think that the 
curve is differentiable. The big question is: how do you find a formula for 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 , the 

slope of the tangent line to the circle at a given point on the circle?  
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By viewing y as an implicit1 function of x, you essentially think of y as some function 
whose formula f (x) is unknown, but which you can differentiate. Just as y represents 
an unknown formula, so too its derivative with respect to x, 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
, will be (at least 

temporarily) unknown. 

 Consider the equation x2 + y2 = 16 and view y as an unknown differentiable 
function of x. Differentiating both sides of the equation with respect to x, you have 

𝑑𝑑
𝑑𝑑𝑥𝑥

[𝑥𝑥2 + 𝑦𝑦2] =
𝑑𝑑
𝑑𝑑𝑥𝑥

[16] 

On the right, the derivative of the constant 16 is 0, and on the left you can apply the 
sum rule, so it follows that 

𝑑𝑑
𝑑𝑑𝑥𝑥

[𝑥𝑥2] +
𝑑𝑑
𝑑𝑑𝑥𝑥

[𝑦𝑦2] = 0 

Next, it is essential that you recognize the different roles being played by x and y. 
Since x is the independent variable, it is the variable with respect to which you are 
differentiating, and thus 𝑑𝑑

𝑑𝑑𝑑𝑑
[𝑥𝑥2] = 2𝑥𝑥.  So far, that means 

2𝑥𝑥 +
𝑑𝑑
𝑑𝑑𝑥𝑥

[𝑦𝑦2] = 0 

But y is the dependent variable and y is an implicit function of x. Therefore, when 
you want to compute 𝑑𝑑

𝑑𝑑𝑑𝑑
[𝑦𝑦2] it is identical to the situation in Investigation 1, where 

you computed 𝑑𝑑
𝑑𝑑𝑑𝑑

[𝑓𝑓(𝑥𝑥)2] . In both situations, you have an unknown function being 
squared, and you seek the derivative of the result. This requires the chain rule, by 
which you find that 𝑑𝑑

𝑑𝑑𝑑𝑑
[𝑦𝑦2] = 2𝑦𝑦 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 . So, that gets you to 

2𝑥𝑥 + 2𝑦𝑦
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

= 0 

Since your goal is to find an expression for 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, just solve for it. Subtracting 2x from 
both sides and dividing by 2y, 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

= −
2𝑥𝑥
2𝑦𝑦

= −
𝑥𝑥
𝑦𝑦

 

                                                           
1 Essentially the idea of an implicit function is that it can be broken into pieces where each piece can 
be viewed as an explicit function of x, and the combination of those pieces constitutes the full implicit 
function. For the circle, you could choose to take the top half as one explicit function of x, and the 
bottom half as another. 
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There are several important things to observe about the result that 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑑𝑑
𝑑𝑑

.  

First, this expression for the derivative involves both x and y. It makes sense that this 
should be the case, since for each value of x between -4 and 4, there are two 
corresponding points on the circle, and the slope of the tangent line is different at 
each of these points. Second, this formula is entirely consistent with your 

understanding of circles. If you consider the 
radius from the origin to the point  
(a, b), the slope of this line segment is 𝑚𝑚𝑟𝑟 = 𝑏𝑏

𝑎𝑎
. 

The tangent line to the circle at  
(a, b) will be perpendicular to the radius, and 
thus have slope 𝑚𝑚𝑡𝑡 = −𝑎𝑎

𝑏𝑏
 , as shown at left.  

Finally, the slope of the tangent line is zero at  
(0, 4) and (0, -4), and is undefined at (-4, 0) and 
(4, 0); all of these values are consistent with the 
formula 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= −𝑑𝑑

𝑑𝑑
 . 

 

Example 1. For the curve given implicitly by x3 + y2 - 2xy = 2, shown below right, 
find the slope of the tangent line at (-1, 1). 

 

Solution.  Begin by differentiating the curve’s 
equation implicitly. Taking the derivative of each 
side with respect to x, 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

[𝑥𝑥3 + 𝑦𝑦2 − 2𝑥𝑥𝑦𝑦] =
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

[2], 

 By the sum rule and the fact that the derivative of 
a constant is zero, you have 

𝑑𝑑
𝑑𝑑𝑥𝑥

[𝑥𝑥3] +
𝑑𝑑
𝑑𝑑𝑥𝑥

[𝑦𝑦2] −
𝑑𝑑
𝑑𝑑𝑥𝑥

[2𝑥𝑥𝑦𝑦] = 0, 

The first uses the simple power rule, the second requires the chain rule (since y is an 
implicit function of x), and the third necessitates the product rule (again since y is a 
function of x). Applying these rules, you now find that 
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3𝑥𝑥2 + 2𝑦𝑦
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

− [2𝑥𝑥
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

+ 2𝑦𝑦] = 0, 

3𝑥𝑥2 + 2𝑦𝑦
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

− 2𝑥𝑥
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

− 2𝑦𝑦 = 0, 

Remembering that your goal is to find an expression for 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 so that you can 
determine the slope of a particular tangent line, you want to solve the preceding 
equation for 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
. To do so, isolate the variable (put the terms involving 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 on one side 

of the equation) and then factor. So, subtracting 3𝑥𝑥2 − 2𝑦𝑦 from both sides, it follows 
that 

2𝑦𝑦
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

− 2𝑥𝑥
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

= 2𝑦𝑦 − 3𝑥𝑥2, 

Factoring the left side to isolate 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, you have 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

(2𝑦𝑦 − 2𝑥𝑥) = 2𝑦𝑦 − 3𝑥𝑥2, 

 

Finally, you divide both sides by (2𝑦𝑦 − 2𝑥𝑥) and conclude that 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

=
2𝑦𝑦 − 3𝑥𝑥2

2𝑦𝑦 − 2𝑥𝑥
 

Here again, the expression for 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 depends on both x and y. To find the slope of the 

tangent line at (-1, 1), substitute this point in the formula for 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 , using the notation 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥
�

 
 

(−1,1)
=

2(1) − 3(−1)2

2(1) − 2(−1)
= −

1
4

 

This value matches a visual estimate of the slope of the tangent line shown in the 
graph on the previous page. 

 

Example 2 shows that it is possible when differentiating implicitly to have multiple 
terms involving 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
. Regardless of the particular curve involved, your approach will 

be similar each time. After differentiating, expand so that each side of the equation is 
a sum of terms, some of which involve 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
. Next, addition and subtraction are used to 
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get all terms involving 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 on one side of the equation, with all remaining terms on 

the other. Finally, factor to get a single instance of 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 , and then divide to solve for 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. 

Note, too, that since 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is often a function of both x and y, you use the notation  

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥
�

 
 

(𝑎𝑎,𝑏𝑏)
 

to denote the evaluation of 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 at the point (a, b). This is analogous to writing f ‘(a) 
when f ‘ depends on a single variable. 

Finally, there is a big difference between writing 𝑑𝑑
𝑑𝑑𝑑𝑑

 and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. For example, 

𝑑𝑑
𝑑𝑑𝑥𝑥

[𝑥𝑥2 + 𝑦𝑦2] 

gives an instruction to take the derivative with respect to x of the quantity 𝑥𝑥2 + 𝑦𝑦2, 
presumably where y is a function of x. On the other hand, 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

(𝑥𝑥2 + 𝑦𝑦2 

means the product of the derivative of y with respect to x with the quantity 𝑥𝑥2 + 𝑦𝑦2. 
Understanding this notational subtlety is essential. 

 

Investigation 2: Consider the curve defined by the equation 𝑥𝑥 = 𝑦𝑦5 − 5𝑦𝑦3 + 4𝑦𝑦, 
whose graph is pictured below right. 

 a) Explain why it is not possible to express y as 
an explicit function of x. 

b) Use implicit differentiation to find a formula 
for 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
. 

c) Use your result from part (b) to find an 
equation of the line tangent to the graph of  
𝑥𝑥 = 𝑦𝑦5 − 5𝑦𝑦3 + 4𝑦𝑦 at the point (0, 1). 

d) Use your result from part (b) to determine all 
of the points at which the graph of 𝑥𝑥 = 𝑦𝑦5 − 5𝑦𝑦3 +
4𝑦𝑦 has a vertical tangent line. 
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Two natural questions to ask about any curve involve where the tangent line can be 
vertical or horizontal. To be horizontal, the slope of the tangent line must be zero, 
while to be vertical, the slope must be undefined. It is typically the case when 
differentiating implicitly that the formula for 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 is expressed as a quotient of 

functions of x and y, say 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

=
𝑝𝑝(𝑥𝑥.𝑦𝑦)
𝑞𝑞(𝑥𝑥,𝑦𝑦)

 

Thus, you observe that the tangent line will be horizontal precisely when the 
numerator is zero and the denominator is nonzero, making the slope of the tangent 
line zero. Similarly, the tangent line will be vertical whenever 𝑞𝑞(𝑥𝑥,𝑦𝑦) = 0 and 
𝑝𝑝(𝑥𝑥,𝑦𝑦) ≠ 0, making the slope undefined. If both x and y are involved in an equation 
such as 𝑝𝑝(𝑥𝑥,𝑦𝑦) = 0, you try to solve for one of them in terms of the other, and then 
use the resulting condition in the original equation that defines the curve to find an 
equation in a single variable that you can solve to determine the point(s) that lie on 
the curve at which the condition holds. It is not always possible to execute the 
desired algebra due to the possibly complicated combinations of functions that often 
arise. 

 

Investigation 3: Consider the curve defined by the equation  

𝑦𝑦(𝑦𝑦2 − 1)(𝑦𝑦 − 2) = 𝑥𝑥(𝑥𝑥 − 1)(𝑥𝑥 − 2) , whose graph is pictured below right. Through 
implicit differentiation, it can be shown that 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

=
(𝑥𝑥 − 1)(𝑥𝑥 − 2) + 𝑥𝑥(𝑥𝑥 − 2) + 𝑥𝑥(𝑥𝑥 − 1)

(𝑦𝑦2 − 1)(𝑦𝑦 − 2) + 2𝑦𝑦2(𝑦𝑦 − 2) + 𝑦𝑦(𝑦𝑦2 − 1) 

Use this fact to answer each of the following 
questions. 

a) Determine all points (x, y) at which the 
tangent line to the curve is horizontal. (Use 
technology appropriately to find the needed 
zeros of the relevant polynomial function.) 

b) Determine all points (x, y) at which the 
tangent line is vertical. (Use technology 
appropriately to find the needed zeros of the 
relevant polynomial function.) 
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c) Find the equation of the tangent line to the curve at one of the points where x = 1. 

 

Investigation 4: For each of the following curves, use implicit differentiation to find 
dy/dx and determine the equation of the tangent line at the given point. 

a) x3 – y3 = 6xy, (-3, 3) 

b) sin(y) + y = x3 + x,  (0, 0) 

c) 3xe-xy = y2, (0.619061, 1) 

 

 

III. Exercises 

1. Consider the curve given by the equation 2y3 + y2 - y5 = x4 - 2x3 + x2.  Find all 
points at which the tangent line to the curve is horizontal or vertical. Be sure to use a 
graphing utility to plot this implicit curve and to visually check the results of 
algebraic reasoning that you use to determine where the tangent lines are horizontal 
and vertical. 

 

2. For the curve given by the equation sin(x + y) + cos(x - y) = 1, find the equation of 
the tangent line to the curve at the point (𝜋𝜋

2
 , 𝜋𝜋
2

) 

 

3. Implicit differentiation enables you a different perspective from which to see why 
the rule 𝑑𝑑

𝑑𝑑𝑑𝑑
[𝑎𝑎𝑑𝑑] = 𝑎𝑎𝑑𝑑ln (𝑎𝑎) holds, if you assume that 𝑑𝑑

𝑑𝑑𝑑𝑑
[ln(𝑎𝑎)] = 1 . This exercise 

leads you through the key steps to do so. 

a) Let 𝑦𝑦 = 𝑎𝑎𝑑𝑑  . Rewrite this equation using the natural logarithm function to write x 
in terms of y (and the constant a). 

b) Differentiate both sides of the equation you found in (a) with respect to x, keeping 
in mind that y is implicitly a function of x. 

(c) Solve the equation you found in (b) for 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, and then use the definition of y to 

write 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 solely in terms of x. What have you found? 
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IV. Assessment – Khan Academy 

1.  Complete the following online practice exercises in the seventh unit (Basic 
Differentiaion) of Khan Academy’s AP Calculus AB course:  

a.  Review Worksheet (not graded): https://www.khanacademy.org/math/ap-
calculus-ab/advanced-differentiation-ab/implicit-differentiation-advanced-
ab/a/implicit-differentiation-review  

b.  https://www.khanacademy.org/math/ap-calculus-ab/advanced-
differentiation-ab/implicit-differentiation-intro-ab/e/implicit-
differentiation  

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.khanacademy.org/math/ap-calculus-ab/advanced-differentiation-ab/implicit-differentiation-advanced-ab/a/implicit-differentiation-review
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