1.4 Limits Involving Infinity

Asymptotes and End Behavior

The symbol for infinity (∞) does not represent a real number. We use ∞ to describe the behavior of a function
 when the values in its domain or range outgrow all finite bounds. For example, when one says "the limit of f as x approaches infinity" it is meant the limit of f as x moves increasingly far to the right on the number line. When we say "the limit of f as x approaches negative infinity $(-\infty)$ " we mean the limit of f as x moves increasingly far to the left. (The limit in each case may or may not exist.)

Looking at $f(x)=\frac{1}{x}$, (pictured at left), observe that
(a) as $x \rightarrow \infty, \frac{1}{x} \rightarrow 0$ and you would write

$$
\lim _{x \rightarrow \infty}\left(\frac{1}{x}\right)=0
$$

(b) as $x \rightarrow-\infty, \frac{1}{x} \rightarrow 0$ and you would write

$$
\lim _{x \rightarrow \infty}\left(\frac{1}{x}\right)=0
$$

Therefore, the line $y=0$ is a horizontal asymptote of the graph of f.

Definition: Horizontal Asymptote
The line $y=b$ is a horizontal asymptote of the graph of a function $f(x)$ if either $\lim _{x \rightarrow \infty} f(x)=b$, or $\lim _{x \rightarrow-\infty} f(x)=b$.

The graph of $f(x)$ has the single horizontal asymptote $y=2$ because

$$
\lim _{x \rightarrow \infty}\left(2+\frac{1}{x}\right)=2 \quad \text { and } \quad \lim _{x \rightarrow-\infty}\left(2+\frac{1}{x}\right)=2
$$

Investigation 1: Use graphs and tables to find $\lim _{x \rightarrow \infty} f(x), \lim _{x \rightarrow-\infty} f(x)$, and identify all the horizontal asymptotes of $f(x)=\frac{x}{\sqrt{x^{2}+1}}$.

II. Infinite Limits as $x \rightarrow a$

If the values of a function $f(x)$ outgrow all positive bounds as x approaches a finite number a, one says that $\lim _{x \rightarrow a} f(x)=\infty$. If the values of f become large and negative, exceeding all negative bounds as $x \rightarrow a$, it is said that $\lim _{x \rightarrow a} f(x)=-\infty$.

Looking at $f(x)=\frac{1}{x}$ (pictured her again), observe that $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}\right)=\infty$ and $\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}\right)=-\infty$.

We say that the line $x=0$ is a vertical asymptote of the graph of f.

Definition: Vertical Asymptote
The line $x=b$ is a vertical asymptote of the graph of a function $f(x)$ if either $\lim _{x \rightarrow 0^{+}} f(x)=b$, or $\lim _{x \rightarrow 0^{-}} f(x)=b$.

Investigation 2: Given $f(x)=\frac{1}{x^{2}-4}$. Find the vertical asymptotes of the graph of $\mathrm{f}(\mathrm{x})$ and describe the behavior of $f(x)$ to the left and right of each vertical asymptote.

IV. Exercises

1. Use graphs and tables to find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$ and identify all horizontal asymptotes.
a) $f(x)=\cos \left(\frac{1}{x}\right)$
b) $f(x)=\frac{e^{-x}}{x}$
c) $f(x)=\frac{x}{|x|}$
d) $f(x)=\frac{3 x^{3}-x+1}{x+3}$
2. Use graphs and tables to find the limits.
a) $\lim _{x \rightarrow 2^{+}}\left(\frac{1}{x-2}\right)$
b) $\lim _{x \rightarrow 3^{-}}\left(\frac{1}{x}+3\right)$
c) $\lim _{x \rightarrow 0^{+}}(\csc x)$
d) $\lim _{x \rightarrow 0^{+}}(\sec x)$
3. Find the vertical asymptotes of the graph of $g(x)$ and describe the behavior of $g(x)$ to the left and right of each vertical asymptote.
a) $g(x)=\frac{x^{2}-1}{2 x+4}$
b) $g(x)=\frac{x^{2}-2 x}{x+1}$
b) $g(x)=\frac{\tan x}{\sin x}$

IV. Assessment - Khan Academy

Complete the next five online practice exercises in the fourth unit (Infinite Limits) of Khan Academy's AP Calculus AB course:

- https://www.khanacademy.org/math/ap-calculus-ab/ab-limits-continuity/ab-infinite-limits/e/unbounded-limits-graphical
- https://www.khanacademy.org/math/ap-calculus-ab/ab-limits-continuity/ab-infinite-limits/e/limits-at-infinity-where-f-x--is-unbounded
- https://www.khanacademy.org/math/ap-calculus-ab/ab-limits-continuity/ab-limits-at-infinity/e/limits-at-infinity-where-x-is-unbounded
- https://www.khanacademy.org/math/ap-calculus-ab/ab-limits-continuity/ab-limits-at-infinity/e/limits-at-infinity-of-rational-functions-radicals
- https://www.khanacademy.org/math/ap-calculus-ab/ab-limits-continuity/ab-limits-at-infinity/e/limits-at-infinity-of-rational-functions-trig

