
Software Objects
Objects are the fundamental component of object-oriented programming. All values in Python
are represented as objects. This includes, for example, lists, as well as numeric values.

What Is an Object?
The notion of software objects derives from objects in the real world. All objects have certain
attributes and behavior. The attributes of a car, for example, include its color, number of miles
driven, current location, and so on. Its behaviors include driving the car (changing the number of
miles driven attribute) and painting the car (changing its color attribute), for example.

Similarly, an object contains a set of attributes, stored in a set of instance variables, and a set
of functions called methods that provide its behavior. For example, when sorting a list in
procedural programming, there are two distinct entities—a sort function and a list to pass it, as
seen below:

In object-oriented programming, the sort routine would be part of the object containing the list.

Here, names_list is an object instance of the Python built-in list type. All list objects contain
the same set of methods. Thus, names_list is sorted by simply calling that object’s sort
method,

names_list.sort()

The period is referred to as the dot operator, used to select a member of a given object—in this
case, the sort method. Note that no arguments are passed to sort. That is because methods

operate on the data of the object that they are part of. Thus, the sort method does not need to
be told which list to sort.
Suppose there were another list object called part_numbers, containing a list of automobile
part numbers. Since all list objects behave the same, part_numbers would contain the
identical set of methods as names_list. The data that they would operate on, however, would
be different. Thus, two objects of the same type differ only in the particular set of values that
each holds.

In order to sort this list, therefore, the sort method of object part_numbers is called,

part_numbers.sort()

The sort routine is the same as the sort routine of object names_list. In this
case, however, the list of part numbers is sorted instead. Methods append,
insert, remove, count, and reverse also provide additional functionality for
lists.

Part II - Object References
In this section we look at how objects are represented (which all values in Python
are), and the effect it has on the operations of assignment and comparison, as well
as parameter passing.

References in Python
In Python, objects are represented as a reference to an object in memory, as seen below:

A reference is a value that references, or “points to,” the location of another entity. Thus, when
a new object in Python is created, two entities are stored—the object, and a variable holding a
reference to the object. All access to the object is through the reference value.

The value that a reference points to is called the dereferenced value. This is the value that
the variable represents, as shown here:

We can get the reference value of a variable (that is, the location in which the corresponding
object is stored) by use of built-in function id.

>>> id(n) >>> id(k) >>> id(s)

505498136 505498136 505498296

We see that the dereferenced values of n and k, 10, is stored in the same memory location
(505498136), whereas the dereferenced value of s, 20, is stored in a different location
(505498296). Even though n and k are each separately assigned literal value 10, they
reference the same instance of 10 in memory (505498136). We would expect there to be
separate instances of 10 stored. Python is using a little cleverness here. Since integer values
are immutable, it assigned both n and k to the same instance. This saves memory and

reduces the number of reference loca- tions that Python must maintain. From the
programmer’s perspective however, they can be treated as if they are separate instances.

Your Turn

From the Python Shell, enter the following and observe the results.

>>> n=10 >>> n=20
>>> k=20 >>> k=20

>>> id(n) >>> id(n)
??? ???

>>> id(k) >>> id(k)
??? ???

Part III - The Assignment of References
With our current understanding of references, consider what happens when variable n is
assigned to variable k, as seen below:

When variable n is assigned to k, it is the reference value of k that is assigned, not the
dereferenced value 20, as shown below This can be determined by use of the built-in id
function, as demonstrated below.

>>> id(k) >>> id(k) = = id(n)
505498136 True

>>> id(n) >>> n is k
505498136 True

Thus, to verify that two variables refer to the same object instance, we can either compare the
two id values by use of the comparison operator, or make use of the provided is operator
(which performs id(k) = = id(n)).
Thus, both n and k reference the same instance of literal value 20. This occurred in the above
example when n and k were separately assigned 20 because integers are an immutable type,
and Python makes attempts to save memory. In this case, however, n and k reference the
same instance of 20 because assignment in Python assigns reference values. We must be
aware of the fact, therefore, that when assigning variables referencing mutable values, such as
lists, both variables reference the same list instance as well. We will discuss the implication of
this next.

Finally, we look at what happens when the value of one of the two variables n or k is changed,
as seen here:

Here, variable k is assigned a reference value to a new memory location holding the value 30.
The previous memory location that variable k referenced is retained since variable n is still
referencing it. As a result, n and k point to different values, and therefore are no longer equal.

Your Turn

From the Python Shell, enter the following and observe the results.

>>> n=10 >>> n=20
>>> k=20 >>> k=20

>>> id(n) >>> id(n)
??? ???

>>> id(k) >>> id(k)
??? ???

Part III - Memory Deallocation and Garbage Collection
Next we consider what happens when in addition to variable k being reassigned, variable n is
reassigned as well. The result is depicted below:

After n is assigned to 40, the memory location storing integer value 20 is no longer referenced
- thus, it can be deallocated. To deallocate a memory location means to change its status from
“currently in use” to “available for reuse.” In Python, memory deallocation is automatically
performed by a process called garbage collection. Garbage collection is a method of
automatically determining which locations in memory are no longer in use and deallocating
them. The garbage collection process is ongoing during the execution of a Python program.

List Assignment and Copying
Now that you understand the use of references in Python, we can revisit the discussion on
copying lists from Chapter 4. We know that when a variable is assigned to another variable
referencing a list, each variable ends up referring to the same instance of the list in memory, as
seen below:

Thus, any changes to the elements of list1 results in changes to list2,

>>>list1[0] = 5
>>>list2[0]
5

We also learned that a copy of a list can be made as follows,

>>>list2 = list(list1)

list() is referred to as a list constructor. The result of the copying is illustrated below:.

A copy of the list structure has been made. Therefore, changes to the list elements of list1
will
not result in changes in list2.

>>>list1[0] = 5
>>>list2[0] 10

The situation is different if a list contains sublists, however.

>>>list1 = [[10, 20], [30, 40], [50, 60]]
>>>list2 = list(list1)

The resulting list structure after the assignment is shown here:

Notice that although copies were made of the top-level list structures, the elements within each
list were not copied. This is referred to as a shallow copy. Thus, if a top-level element of one
list is re-assigned, for example list1[0] 5 [70, 80], the other list would remain unchanged,
as seen below:

If, however, a change to one of the sublists is made, for example, list1[0][0] 5 70, the cor-
responding change would be made in the other list. That is, list2[0][0] would be equal to
70 also, as shown here:

A deep copy operation of a list (structure) makes a copy of the complete structure, including
sub- lists. (Since immutable types cannot be altered, immutable parts of the structure may not
be copied.) Such an operation can be performed with the deepcopy method of the copy
module,

>>>import copy
>>>list2 = copy.deepcopy(list1)

The result of this form of copying is shown here:

Thus, the reassignment of any part (top level or sublist) of one list will not result in a change in
the other. It is up to you as the programmer to determine which form of copy is needed for lists,
and other mutable types.

Your Turn

From the Python Shell, enter the following and observe the results.

>>> import copy

>>> list1 = [10, 20, 30, 40] >>> list1 = [10, 20, 30, [40]]
>>> list2 = list1 >>> list2 = copy.deepcopy (list1)
>>> id(list1) == idList2) >>> id(list1) == idList2)
??? ???

>>> list1[0]=60 >>> list1[0]=60
>>> list1 >>> list1
??? ???

>>> list2 >>> list2
??? ???

>>> list1 = [10, 20, 30, [40]] >>> list1 = [10, 20, 30, (40)]
>>> list2 = list1 >>> list2 = copy.deepcopy (list1)

>>> id(list1) == idList2) >>> list1[3][0] = 90
??? ???

>>> list1[0]=60 >>> list1[3][0] = (100,)
>>> list1[3][0] = 90 >>> list1
>>> list1 ???
???

>>> list2 >>> list2
??? ???

Concepts and Procedures

1. All objects have a set of and .

2. The operator is used to select members of a given object.

3. Functions that are part of an object are called .

4. There are two values associated with every object in Python, the
value and the value.

5. When memory locations are deallocated, it means that,
a) The memory locations are marked as unusable for the rest of the program execution.
b) The memory locations are marked as available for reuse during the remaining program

execution.

6. Garbage collection is the process of automatically identifying which areas of memory can
be deallocated. (TRUE/FALSE)

7. Indicate which of the following is true, and explain why.
a) When one variable is assigned to another holding an integer value, if the second

variable is assigned a new value, the value of the first variable will change as well.

b) When one variable is assigned to another holding a list of integer values, if the second
variable assigns a new integer value to an element in the list, the list that the first
variable is assigned to will be changed as well.

Problem Solving
1. Indicate exactly what the contents of lst1 and lst2 would be after each of
the following set of assignments,

2. Indicate which of the following set of assignments would result in automatic
garbage collection in Python.

3. For the set of assignments in question 1, indicate how both the id method and is
operator can be used to determine if lists lst1 and lst2 are each referencing the
same list instance in memory.

	Software Objects
	What Is an Object?
	Part II - Object References
	References in Python

	Part III - The Assignment of References
	Part III - Memory Deallocation and Garbage Collection
	List Assignment and Copying
	Concepts and Procedures
	Problem Solving

