Unit 1, Activity 11, Composite Function Discovery Worksheet

]	Name	Date	
	Composite Functions in a Double Function Machine		

(1) f(x) = 3x + 7 and g(x) = -4x - 1. Find f(g(5)) and g(f(5)) with the function machine.

(2) Using the following function machine to find a rule for f(g(x)) and g(f(x)).

<u>x = x</u>	g(x) = -4x - 1	 f(x) = 3x + 7	
<u>x = x</u>	f(x) = 3x + 7	g(x) = -4x - 1	
f(g(x)) =		 g(f(x)) =	

Finding Equations of Composite Functions and Graphing Them on the Calculator:

- ★ In order to graph the composition f(g(x)) on a graphing calculator, enter g(x) into $y_1 = -4x 1$ and turn it off so it will not graph. (*Note: To turn an equation off, use your left arrow to move the cursor over the = sign and press ENTER.*)
- ♦ Next, enter f(x) into y_2 as follows $y_2 = 3(y_1) + 7$ and graph. (*Note:* y_1 is under **④**, Y–VARS, 1: *Function*, 1: $Y_{1.}$)
- Graph the answer to f(g(x)) from the function machine in #2 above in y₃, to see if they are the same graph.
- (3) Practice with the polynomial functions: f(x) = 2x + 1 and $g(x) = 4x^2 + 3$. Find f(g(x)) and g(f(x)) and check on the calculator.

Unit 1, Activity 11, Composite Function Discovery Worksheet

Composite Functions in a Table: Use the table to calculate the following compositions:

- (11) f(g(2)) =_____
- (12) g(f(2)) =_____
- (13) f(g(3)) =_____
- (14) g(f(3)) =_____

x	f(x)	g(x)
2	4	5
3	8	4
4	9	12
5	3	7

Decomposition of Composite Functions

Most functions are compositions of basic functions. Work backwards to determine the basic functions that created the composition.

	f(g(x))	f(x)	g(x)
(15)	$(x+4)^2+5$		
(16)	$\sqrt{x-4}$		
(17)	$(4x-1)^2$		
(18)	x + 2		
(19)	[x-2]+4		

Domain & Range of Composite Functions

Find the domains and composition f(g(x)) to fill in the table below to discover the rule for the domain of a composite function:

	f(x)	g(x)	Domain of $f(x)$	Domain of $g(x)$	f(g(x))	Domain of $f(g(x))$
(20)	$\sqrt{x-3}$	<i>x</i> + 1				
(21)	<i>x</i> + 1	$\sqrt{x-3}$				
(22)	1	2x + 4				
	x					
(23)	2 <i>x</i> +4	1				
		x				
(24)	\sqrt{x}	x^2				
(25)	x^2	\sqrt{x}				

Unit 1, Activity 11, Composite Function Discovery Worksheet

(26) Develop a rule for determining the <u>domain of a composition</u>: