9.2 Close Enough (Limits)

Practice Tasks

I. Concepts and Procedures

1. When we write $\lim _{x \rightarrow a} f(x)=L$ then, roughly speaking, the values of $f(x)$ get closer and closer to the number \qquad as the values of x get closer and closer to \qquad .
2. Use a table to determine the following:
a. $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$

\boldsymbol{x}							
$\boldsymbol{f}(x)$							

b. $\quad \lim _{x \rightarrow 2} \frac{x-2}{x^{2}+x-6}$

\boldsymbol{x}							
$\boldsymbol{f}(\boldsymbol{x})$							

c. $\quad \lim _{x \rightarrow \frac{1}{2}} \frac{x}{2 x-1}$

x							
$\boldsymbol{f}(\boldsymbol{x})$							

d. $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}$

\boldsymbol{x}							
$\boldsymbol{f}(\boldsymbol{x})$							

e. $\lim _{x \rightarrow 0} \frac{\sin x}{x}$

\boldsymbol{x}							
$\boldsymbol{f}(x)$							

3. Use your graphing calculator to determine $\lim _{x \rightarrow \frac{1}{2}} \frac{x}{2 x-1}$. Include a sketch of the graph of the function.
4. Use direct substitution and the properties of limits to evaluate each of the following.
a. $\lim _{x \rightarrow 4} \frac{3 x+4}{2 x-5}$
b. $\lim _{x \rightarrow 3} 2 x^{2}+x+1$
c. $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$
5. Use any method to evaluate each of the following.
a. $\quad \lim _{x \rightarrow 2}\left\{\begin{array}{c}5-x ; x \leq 2 \\ 2 x-3 ; x>2\end{array}\right.$
b. $\quad \lim _{x \rightarrow 4} \frac{x^{2}+3 x-40}{x-5}$
c. $\quad \lim _{x \rightarrow 4} \sqrt{4 x+9}$

II. Reasoning

1. Graphing Calculator Pitfalls
a. Evaluate $h(x)=\frac{\tan x-x}{x^{3}}$ for $x=1,0.5,0.1,0.05,0.01$, and 0.005 .
b. Guess the value of $\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}}$.
c. Evaluate $h(x)$ for successively smaller values of x until you finally reach 0 values for $h(x)$. Are you still confident that your guess in part (b) is correct? Explain why you eventually obtained 0 values.
d. Graph the function h in the viewing window $[-1,1]$. Then zoom in toward the point where the graph crosses the y-axis to estimate the limit of $h(x)$ as x approaches 0 . Continue to zoom in until you observe distortions in the graph of h. Compare with your results in part (c).
