8.7 Carbon Dating

Practice Tasks

I. Problem Solving

1. A particular bank offers 6% interest per year compounded monthly. Timothy wishes to deposit $\$ 1,000$.
a. What is the interest rate per month?
b. Write a formula for the amount A Timothy will have after n months.
c. Write a formula for the number of months it will take Timothy to have A dollars.
d. Doubling-Time is the amount of time it takes for an investment to double. What is the doubling-time of Timothy's investment?
e. In general, what is the doubling-time of an investment with an interest rate of $\frac{r}{12}$ per month?
2. A study done from 1950 through 2000 estimated that the world population increased on average by 1.77% each year. In 1950, the world population was 2519 million.
a. Write a formula for the world population t years after 1950. Use p to represent world population.
b. Write a formula for the number of years it will take to reach a population of p.
c. Use your equation in part (b) to find when the model predicts that the world population will be 10 billion.
3. Consider the case of a bank offering r (given as a decimal) interest per year compounded monthly, if you deposit P dollars.
a. What is the interest rate per month?
b. Write a formula for the amount A you will have after n months.
c. Write a formula for the number of months it will take to have A dollars.
d. What is the doubling-time of an investment earning 7\% interest per year, compounded monthly? Round up to the next month.
4. A half-life is the amount of time it takes for a radioactive substance to decay by half. In general, we can use the equation $A=P\left(\frac{1}{2}\right)^{t}$ for the amount of the substance remaining after t half-lives.
a. What does P represent in this context?
b. If a half-life is 20 hours, rewrite the equation to give the amount after h hours.
c. Use the natural logarithm to express the original equation as having base e.
d. The formula you wrote in part (c) is frequently referred to as the "Pert" formula, that is, $P e^{r t}$. Analyze the value you have in place for r in part (c). What do you notice? In general, what do you think r represents?
e. Jess claims that any exponential function can be written with base e. Is she correct? Explain why.
5. If caffeine reduces by about 10% per hour, how many hours h does it take for the amount of caffeine in a body to reduce by half (round up to the next hour)?
6. Iodine- 123 has a half-life of about 13 hours, emits gamma-radiation, and is readily absorbed by the thyroid. Because of these facts, it is regularly used in nuclear imaging.
a. Write a formula that gives you the percent p of iodine- 123 left after t half-lives.
b. What is the decay rate per hour of iodine-123? Approximate to the nearest millionth.
c. Use your result to part (b). How many hours h would it take for you to have less than 1% of an initial dose of iodine-123 in your system? Round your answer to the nearest tenth of an hour.
7. An object heated to a temperature of $50^{\circ} C$ is placed in a room with a constant temperature of $10^{\circ} \mathrm{C}$ to cool down. The object's temperature T after t minutes can be given by the function $T(t)=10+40 e^{-0.023105 t}$.
a. How long will it take for the object to cool down to $30^{\circ} \mathrm{C}$?
b. Will it take longer for the object to cool from $50^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ or from $30^{\circ} \mathrm{C}$ to $10.1^{\circ} \mathrm{C}$?
c. Will the object ever be $10^{\circ} \mathrm{C}$ if kept in this room?
d. What is the domain of T^{-1} ? What does this represent?
8. The percent of usage of the word "judgment" in books can be modeled with an exponential decay curve. Let P be the percent as a function of x, and let x be the number of years after 1900 , then $P(x)=0.0220465 \cdot e^{-0.0079941 x}$.
a. According to the model, in what year was the usage 0.1% of books?
b. When will the usage of the word "judgment" drop below 0.001% of books? This model was made with data from 1950 to 2005. Do you believe your answer will be accurate? Explain.
c. Find P^{-1}. What does the domain represent? What does the range represent?

II. Reasoning

1. How can the graph of $g(x)=\log _{4} x$ be obtained by a transformation of $f(x)=\ln x$?
