8.6: Inverse Log?

Log and Exponential Functions

So, do logarithmic functions have an inverse? Let's find out?

a. Complete the table

x	f(x)
-2	
-1	
0	
1	
2	
3	

b. Use the points (x, f(x)) to create a sketch of the graph of y = f(x).

- c. Create a table of values for the function f^{-1} , and sketch the graph of $y = f^{-1}(x)$ on the grid above.
- d. What type of function is f^{-1} ? Explain how you know.

II. Getting Back on the Log

- 2. Given $f(x) = 2^x$, use the definition of the inverse of a function and the definition of a logarithm to write a formula for $f^{-1}(x)$.
- 3. Find the value of *y* in each equation. Explain how you determined the value of *y*.
 - a. $y = \log_2(2^2)$
 - b. $y = \log_2(2^5)$
 - c. $y = \log_2(2^{-1})$
 - d. $y = \log_2(2^x)$

- 4. Let $f(x) = \log_2(x)$ and $g(x) = 2^x$. a. What is f(g(x))?
 - b. Based on the results of part (a), what can you conclude about the functions f and g?
- 5. Find the value of *y* in each equation. Explain how you determined the value of *y*?
 a. y = 3^{log₃(3)}
 - b. $y = 3^{\log_3(9)}$
 - c. $y = 3^{\log_3(81)}$
 - d. $y = 3^{\log_3(x)}$
- 6. Let $f(x) = \log_3(x)$ and $g(x) = 3^x$.
 - a. What is g(f(x))?
 - b. Based on the results in part (a), what can you conclude about the functions f and g?

7. Verify by composition that the functions $f(x) = b^x$ and $g(x) = \log_b(x)$ for b > 0 are inverses of one another.

8. The graph of y = f(x), a logarithmic function, is shown below.

- a. Construct the graph of $y = f^{-1}(x)$.
- b. Estimate the base *b* of these functions. Explain how you got your answer.

III. It's Only Natural

- 9. Use a calculator to get a very accurate estimate of irrational number *e*.
- 10. Is the graph of $y = f^{-1}(x)$ in Exercise 6 a good approximation of the function $g(x) = e^x$? Explain your reasoning.
- 11. Show that $f(x) = \ln(x)$ and $g(x) = e^x$ are inverse functions by graphing y = f(g(x)) and y = g(f(x)) on a graphing calculator. Explain how your graphs support the fact that these two functions are indeed inverses of one another.

12. What is the base of the natural logarithm function $f(x) = \ln(x)$? Explain how you know.

- 13. Find the inverse of each function.
 - a. $f(x) = 2^{x-3}$
 - b. $g(x) = 2\log(x 1)$
 - c. $h(x) = \ln(x) \ln(x 1)$
 - d. $k(x) = 5 3^{-\frac{x}{2}}$
- 14. Check your solutions to Exercise 13 by graphing the functions and the inverses that you found and verifying visually that the reflection property holds.