8.6: Inverse Log?

Log and Exponential Functions

So, do logarithmic functions have an inverse? Let's find out?

1. Let $f(x)=2^{x}$.
a. Complete the table

x	$f(x)$
-2	
-1	
0	
1	
2	
3	

b. Use the points $(x, f(x))$ to create a sketch of the graph of $y=f(x)$.

c. Create a table of values for the function f^{-1}, and sketch the graph of $y=f^{-1}(x)$ on the grid above.
d. What type of function is f^{-1} ? Explain how you know.

II. Getting Back on the Log

2. Given $f(x)=2^{x}$, use the definition of the inverse of a function and the definition of a logarithm to write a formula for $f^{-1}(x)$.
3. Find the value of y in each equation. Explain how you determined the value of y.
a. $\quad y=\log _{2}\left(2^{2}\right)$
b. $y=\log _{2}\left(2^{5}\right)$
c. $y=\log _{2}\left(2^{-1}\right)$
d. $\quad y=\log _{2}\left(2^{x}\right)$
4. Let $f(x)=\log _{2}(x)$ and $g(x)=2^{x}$.
a. What is $f(g(x))$?
b. Based on the results of part (a), what can you conclude about the functions f and g ?
5. Find the value of y in each equation. Explain how you determined the value of y ?
a. $y=3^{\log _{3}(3)}$
b. $y=3^{\log _{3}(9)}$
c. $y=3^{\log _{3}(81)}$
d. $y=3^{\log _{3}(x)}$
6. Let $f(x)=\log _{3}(x)$ and $g(x)=3^{x}$.
a. What is $g(f(x))$?
b. Based on the results in part (a), what can you conclude about the functions f and g ?
7. Verify by composition that the functions $f(x)=b^{x}$ and $g(x)=\log _{b}(x)$ for $b>0$ are inverses of one another.
8. The graph of $y=f(x)$, a logarithmic function, is shown below.

a. Construct the graph of $y=f^{-1}(x)$.
b. Estimate the base b of these functions. Explain how you got your answer.

III. It's Only Natural
9. Use a calculator to get a very accurate estimate of irrational number e.
10. Is the graph of $y=f^{-1}(x)$ in Exercise 6 a good approximation of the function $g(x)=$ e^{x} ? Explain your reasoning.
11. Show that $f(x)=\ln (x)$ and $g(x)=\mathrm{e}^{x}$ are inverse functions by graphing $y=f(g(x))$ and $y=g(f(x))$ on a graphing calculator. Explain how your graphs support the fact that these two functions are indeed inverses of one another.
12. What is the base of the natural logarithm function $f(x)=\ln (x)$? Explain how you know.
13. Find the inverse of each function.
a. $f(x)=2^{x-3}$
b. $g(x)=2 \log (x-1)$
c. $\quad h(x)=\ln (x)-\ln (x-1)$
d. $k(x)=5-3^{-\frac{x}{2}}$
14. Check your solutions to Exercise 13 by graphing the functions and the inverses that you found and verifying visually that the reflection property holds.
