8.1 Rational Operations

Practice Tasks

I. Concepts and Procedures

1. Given $\frac{x+1}{x-2}$ and $\frac{x-1}{x^{2}-4}$ show that performing the following operations results in another rational expression.
a. Addition.
b. Subtraction.
c. Multiplication.
d. Division.
2. For each pair of functions f and g, find the domain of f and the domain of g. Indicate whether f and g are the same function.
a. $f(x)=\frac{x^{2}}{x}, g(x)=x$
b. $\quad f(x)=\frac{2 x^{2}+6 x+8}{2}, g(x)=x^{2}+6 x+8$
c. $\quad f(x)=\frac{x^{2}+3 x+2}{x+2}, g(x)=x+1$
d. $\quad f(x)=\frac{x+2}{x^{2}+3 x+2}, \quad g(x)=\frac{1}{x+1}$
e. $f(x)=\frac{x^{4}-1}{x^{2}-1}, g(x)=x^{2}+1$
f. $\quad f(x)=\frac{x^{4}-1}{x^{2}+1}, g(x)=x^{2}-1$
3. Reduce each rational expression to lowest terms (i.e. simplified form), and specify any excluded values of x.
a. $\quad f(x)=\frac{x^{4}}{x^{2}}$
b. $\quad f(x)=\frac{3 x+3}{15 x-6}$
c. $\quad f(x)=\frac{x^{2}-x-2}{x^{2}+x}$
d. $f(x)=\frac{8 x^{2}+2 x-15}{4 x^{2}-4 x-15}$
e. $f(x)=\frac{2 x^{3}-3 x^{2}-2 x+3}{x^{3}-x}$
f. $\quad f(x)=\frac{3 x^{3}+x^{2}+3 x+1}{x^{3}+x}$

II. Problem Solving

1. Find A and B that make the equation true. Verify your results.
a. $\frac{A}{x+1}+\frac{B}{x-1}=\frac{2}{x^{2}-1}$.
b. $\frac{A}{x+3}+\frac{B}{x+2}=\frac{2 x-1}{x^{2}+5 x+6}$.
2. Find A, B, and C that make the equation true. Verify your result.

$$
\frac{A x+B}{x^{2}+1}+\frac{C}{x+2}=\frac{x-1}{\left(x^{2}+1\right)(x+2)} .
$$

3. Find two rational expressions $\frac{a}{b}$ and $\frac{c}{d}$ that produce the result $\frac{x-1}{x^{2}}$ when using the following operations. Answers for each type of operation may vary. Justify your answers.
a. Addition.
b. Subtraction.
c. Multiplication.
d. Division.
4. Find two rational expressions $\frac{a}{b}$ and $\frac{c}{d}$ that produce the result $\frac{2 x+2}{x^{2}-x}$ when using the following operations. Answers for each type of operation may vary. Justify your answers.
a. Addition.
b. Subtraction.
c. Multiplication.
d. Division.

III. Reasoning

1. Consider the rational expressions A, B and their quotient, $\frac{A}{B}$, where B is not equal to zero.
a. For some rational expression C, does $\frac{A C}{B C}=\frac{A}{B}$?
b. Let $A=\frac{x}{y}+\frac{1}{x}$ and $B=\frac{y}{x}+\frac{1}{y}$. What is the least common denominator of every term of each expression?
c. Find $A C, B C$ where C is equal to your result in part (b). Then find $\frac{A C}{B C}$. Simplify your answer.
d. Express each rational expression A, B as a single rational term; that is, as a division between two polynomials.
e. Write $\frac{A}{B}$ as a multiplication problem.
f. Use your answers to parts (d) and (e) to simplify $\frac{A}{B}$.
g. Summarize your findings. Which method do you prefer using to simplify rational expressions?
