7.1 Characteristics of Function Families

Practice Tasks
I. Concepts and Procedures

1. Graph the following linear equations on the grid. The equation $y=x$ has been graphed for you. For each new equation explain what the number 2 does to the graph of $y=x$. Pay attention to the y-intercept, the x-intercept, and the slope. Identify what changes in the graph and what stays the same.

a. $y_{1}=x+2$
b. $y_{2}=x-2$
c. $y_{3}=2 x$
2. Graph the following quadratic equations on the grid.

The equation $y=x^{2}$ has been graphed for you. For each new equation explain what the number 3 does to the graph of $y=x^{2}$. Pay attention to the y-intercept, the x-intercept(s), and the rate of change. Identify what changes in the graph and what stays the same.
a. $y_{1}=x^{2}+3$
b. $y_{2}=x^{2}-3$
c. $y_{3}=(x-3)^{2}$
d. $y_{4}=(x+3)^{2}$
e. $y_{5}=3 x^{2}$

Transformations on Parent functions
Sketch the graph of the parent function and the graph of the transformed function on the same set of axes.
3. $f(x)=|x|$, and $g(x)=|x+3|$

5. $r(x)=x^{2}$, and $s(x)=-\frac{1}{2} x^{2}+5$

6. $v(x)=\frac{1}{x}$, and $w(x)=-\frac{1}{x}$

7. $k(x)=\log (x)$, and $m(x)=-1+\log (x)$

8. $p(x)=\sin (x)$, and $q(x)=2 \sin \left(x+\frac{\pi}{2}\right)$

9. Find the function values: $f(-2), f(0), f(1)$ and $f(3)$. Indicate if the function is undefined for a given value of x.
a. $\quad F(\mathrm{x})=|x+5|$
b. $\quad f(x)=x|x|$
c. $\quad f(x)=3^{x+2}$
d. $\quad f(x)=\frac{x}{x-4}$
e. $\quad f(x)=\frac{x}{(x+2)}-5$
f. $\quad f(x)=\log _{3} x$
10. A verbal description of a function is given. Find a) algebraic, b) numerical, and c) graphical representations for the function.
a. To evaluate $f(x)$, divide the input by 3 and add $\frac{2}{3}$ to the result.
b. To evaluate $g(x)$, subtract 4.3 from the input and multiply the result by 1.27.
c. Let $T(x)$ be the amount of sales tax charged in Connecticut on a purchase of x dollars. To find the tax, take 6.35% of the purchase price.
d. Let $V(d)$ be the volume of a sphere of diameter d. To find the volume, take the cube of the diameter, then multiply by π and divide by 6 .
11. A function f is given, and the indicated transformations are applied to its graph (in the given order). Write the equation for the final transformed graph.
a. $\quad f(x)=x^{3}$; shift upward 3 units
b. $\quad f(x)=\sqrt{x}$; shift 2 units to the left
c. $f(x)=x^{2}$; shift 3 units to the right and shift upward 1 unit
d. $\quad f(x)=|x|$; shift 4 units to the left and shift downward 2 units

II. Problem Solving

1. The temperature on a certain afternoon is modeled by the function

$$
C(t)=\frac{1}{2} t^{2}+2
$$

where t represents hours after 12 noon $(0 \leq t \leq 6)$ and C is measured in ${ }^{\circ} \mathrm{C}$.
a. What shifting and shrinking operations must be performed on the function $y=$ t^{2} to obtain the function $y=C(t)$?
b. Suppose you want to measure the temperature in ${ }^{\circ} \mathrm{F}$ instead. What transformation would you have to apply to the function $y=C(t)$ to accomplish this? (Use the fact that the relationship between Celsius and Fahrenheit degrees is given by $F=\frac{9}{5} C+32$.) Write the new function that results from this transformation.

III. Reasoning

1. A family of functions is given in part (a). Use a calculator, GeoGebra or Desmos to graph all the given members of the family in parts (b) and (c). In part (d) state the conclusions that you can make from your graphs.
a. $\quad f(x)=(x-c)^{3}$
b. $\quad c=0,2,4,6$
c. $\quad c=0,-2,-4,-6$
d. How does the value of c affect the graphs of this family of functions?
2. A family of functions is given in part (a). Use a calculator, GeoGebra or Desmos to graph all the given members of the family in parts (b) and (c). In part (d) state the conclusions that you can make from your graphs.
a. $\quad f(x)=x^{c}$
b. $\quad c=\frac{1}{2}, \frac{1}{4}, \frac{1}{6}$
c. $\quad c=1, \frac{1}{3}, \frac{1}{5}$
d. How does the value of c affect the graphs of this family of functions?
IV. Modeling
3. There are four ways to represent a function:

- Verbally
- Algebraically - with an equation
- Numerically - in a table
- Visually - in a graph

Think of a function that can be represented in all four ways, and write the four representations.

