3.1 Vector Basics

Practice Tasks

1. A vector in the plane is a line segment with an assigned direction. In the figure below, the vector u has initial point \qquad and terminal point \qquad —.
Vector v has initial point \qquad and terminal point \qquad .

2. A vector in a coordinate plane is expressed by using components. In the figure below, the vector u has initial point (\qquad , \qquad) and terminal point (\qquad , \qquad). The vector v has initial point \qquad) and terminal point (\qquad , \qquad).

3. Find the magnitude of vectors u and v in the graph above.
4. Identify the magnitude and direction in degrees of the following real-world examples of vectors:
a. Harry is bicycling at 15 miles per hour for one hour due West
b. Ron is walking 25 paces due North
c. Hermione is pushing the handle of a lawn mower with a force of 450 newtons at an angle of 56° with the ground.
d. A parachutist is falling straight down at 12.5 miles per hour
5. Find the horizontal and vertical components of the vector with the given magnitude and direction (θ):
a. Magnitude $=40$ foot-pounds; $\theta=30^{\circ}$
b. \quad Magnitude $=1 \mathrm{mph} ; \theta=225^{\circ}$
c. Magnitude $=4$ newtons; $\theta=10^{\circ}$

II. Problem Solving

1. A soccer player kicks a soccer ball so that it leaves the ground with a velocity of 44 feet per second at an angle of 37° with the ground.
a. Draw a diagram that that represents the path of the ball that results from the given magnitude and direction.
b. Find the horizontal and vertical components of the velocity.
2. A man pushes a lawn mower with a force of 30 lb exerted at an angle of 30° to the ground. Find the horizontal and vertical components of the force.
3. A jet is flying in a direction $\mathrm{N} 20^{\circ} \mathrm{E}$ with a speed of $500 \mathrm{mi} / \mathrm{h}$. Find the north and east components of the velocity.
4. A river flows due south at $3 \mathrm{mi} / \mathrm{h}$. A swimmer attempting to cross the river heads due east swimming at $2 \mathrm{mi} / \mathrm{h}$ relative to the water. Find the true velocity of the swimmer as a vector.

5. Suppose that in Exercise 4 the current is flowing at $1.2 \mathrm{mi} / \mathrm{h}$ due south. In what direction should the swimmer head in order to arrive at a landing point due east of his starting point?
III. Reasoning
6. Vectors That Form a Polygon: Suppose that n vectors can be placed head to tail in the plane so that they form a polygon. (The figure shows the case of a hexagon.) Explain why the sum of these vectors is $\mathbf{0}$.

IV. Modeling

1. Equivalent vectors have the same magnitude and the same direction. On the same coordinate grid, sketch four equivalent vectors.
2. Parallel vectors have the same or opposite direction, but not necessarily the same magnitude. On the same coordinate grid, sketch three parallel vectors that are not equivalent vectors.
3. Opposite vectors have the same magnitude but opposite direction. On the same coordinate grid, sketch two opposite vectors.
