2.6 Polar Curves

Practice Tasks

I. Concepts and Procedures

1. To plot points in polar coordinates, we use a grid consisting of \qquad centered at the pole and \qquad emanating from the pole.
2. To graph a polar equation $r=f(\theta)$, we plot all the points (r, θ) that
\qquad the equation.
a. The simplest polar equations are obtained by setting r or θ equal to a constant.

The graph of the polar equation $r=3$ is a \qquad with radius centered at the \qquad _.
b. The graph of the polar equation $\theta=\frac{\pi}{4}$ is a \qquad passing through the \qquad with slope \qquad .
c. Graph these two polar equations below.

$$
r=\sin \left(\theta-\frac{\pi}{6}\right)
$$

$$
r=\sin \left(\theta+\frac{\pi}{6}\right)
$$

d. Explain the results of the two graphs.
3. Match the polar equation with the graphs labeled I-VI.
a. $r=3 \cos \theta$
b. $r=3$

c. $\quad r=2+2 \cos \theta$
d. $r=1+2 \cos \theta$

e. $r=3 \theta$
f. $r=\sin 4 \theta$

3. Sketch a graph of the polar equation, and express the equation in rectangular coordinates.
a. $\quad r=2$
b. $\quad \theta=-\frac{\pi}{2}$
c. $r=4 \cos 2 \theta$
4. Sketch a graph of the polar equation.
a. $\quad r=-2 \cos \theta$
b. $\quad r=-3(1+\sin \theta)$
c. $\quad r=-\cos 5 \theta$
d. $\quad r=\sqrt{3}+\cos (\theta)$
e. $r=2+\sec \theta$

II. Problem Solving

1. Orbit of a Satellite: Scientists and engineers often use polar equations to model the motion of satellites in earth orbit. Let's consider a satellite whose orbit is modeled by the equation $=\frac{22500}{4-\cos \theta}$, where r is the distance in miles between the satellite and the center of the earth and θ is the angle shown in the following figure.
a. On the same viewing screen, graph the circle $r=3960$ (to represent the earth, which we will assume to be a sphere of radius 3960 mi .) and the polar equation of the satellite's orbit. Describe the motion of the satellite as θ increases from 0 to 2 p .
b. For what angle θ is the satellite closest to the earth? Find the height of the satellite above the earth's surface for this value of θ.
II. Reasoning
2. Graph the family of polar equations $r=1+\sin n \theta$ for $n=1,2,3,4$, and 5 . How is the number of loops related to n ?
3. Compare the polar equation of the circle $r=2$ with its equation in rectangular coordinates. In which coordinate system is the equation simpler? Do the same for the equation of the four-leaved rose $r=\sin 2 \theta$. Which coordinate system would you choose to study these curves?
III. Modeling
4. A Transformation of Polar Graphs: How are the graphs of $r=1+\sin \left(\theta-\frac{\pi}{6}\right)$ and $r=$ $1+\sin \left(\theta-\frac{\pi}{3}\right)$ related to the graph of $r=1+\sin \theta$? In general, how is the graph of $r=$ $f(\theta-\alpha)$ related to the graph of $r=f(\theta)$?
