2.6 Polar Curves

Practice Tasks

I. Concepts and Procedures

- 1. To plot points in polar coordinates, we use a grid consisting of ______ centered at the pole and ______ emanating from the pole.
- 2. To graph a polar equation $r = f(\theta)$, we plot all the points (r, θ) that ______ the equation.
 - a. The simplest polar equations are obtained by setting *r* or θ equal to a constant. The graph of the polar equation r = 3 is a ______ with radius centered at the ______.
 - b. The graph of the polar equation $\theta = \frac{\pi}{4}$ is a _____ passing through the _____ with slope _____.
 - c. Graph these two polar equations below.

d. Explain the results of the two graphs.

3. Match the polar equation with the graphs labeled I–VI.

- 3. Sketch a graph of the polar equation, and express the equation in rectangular coordinates.
 - a. *r*=2

b.
$$\theta = -\frac{\pi}{2}$$

c.
$$r = 4 \cos 2\theta$$

- 4. Sketch a graph of the polar equation.
 - a. $r = -2 \cos \theta$
 - b. $r = -3 (1 + \sin \theta)$
 - c. $r = -\cos 5\theta$
 - d. $r = \sqrt{3} + \cos(\theta)$
 - e. $r = 2 + \sec \theta$

II. Problem Solving

- 1. **Orbit of a Satellite**: Scientists and engineers often use polar equations to model the motion of satellites in earth orbit. Let's consider a satellite whose orbit is modeled by the equation $= \frac{22500}{4-cos\theta}$, where *r* is the distance in miles between the satellite and the center of the earth and θ is the angle shown in the following figure.
 - a. On the same viewing screen, graph the circle r = 3960 (to represent the earth, which we will assume to be a sphere of radius 3960 mi.) and the polar equation of the satellite's orbit. Describe the motion of the satellite as θ increases from 0 to 2p.
 - b. For what angle θ is the satellite closest to the earth? Find the height of the satellite above the earth's surface for this value of θ .

II. Reasoning

- 1. Graph the family of polar equations $r = 1 + \sin n \theta$ for n = 1, 2, 3, 4, and 5. How is the number of loops related to *n*?
- 2. Compare the polar equation of the circle r = 2 with its equation in rectangular coordinates. In which coordinate system is the equation simpler? Do the same for the equation of the four-leaved rose $r = \sin 2 \theta$. Which coordinate system would you choose to study these curves?

III. Modeling

1. A Transformation of Polar Graphs: How are the graphs of $r = 1 + \sin(\theta - \frac{\pi}{6})$ and $r = 1 + \sin(\theta - \frac{\pi}{3})$ related to the graph of $r = 1 + \sin \theta$? In general, how is the graph of $r = f(\theta - \alpha)$ related to the graph of $r = f(\theta)$?